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A Variable Structural Control for a Flexible Plate 

 
Xuezhang Hou 1 

 
Abstract 
 

 

A variable structural control problem of a flexible thin plate formulated by partial differential equations with 
viscoelastic boundary conditions is studied in this paper. The problem is written in standard form of linear 
infinite dimensional system in an appropriate energy Hilbert space. The semi group approach of linear 
operators is adopted in investigating well-posedness of the closed loop system. A variable structural control 
for the system is proposed, and meanwhile an equivalent control method is applied to the thin plate system 
so that the thin plate can be exponentially stable and the actual sliding mode can be approximated by ideal 
sliding mode in any accuracy in terms of semi group approach.  
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1 Introduction 
 

The problems of elastic structures with viscoelastic boundary conditions have been studied extensively by 
many articles (see References [1]-[5]). Motivated by the work on wave and heat equations mentioned above, in this 

article we are concerned with an elastic thin plate which occupies a bounded domain Ω ⊂ ℝ2  with 𝐶2 -smooth 

boundary Γ . Assume that Γ = Γ0 ∪ Γ1 , where Γ0  and Γ1  are relatively open subsets of Γ,Γ0 ≠ ∅  has positive 

boundary measure, and Γ0 ∩ Γ1 = ∅. If Γ0 is clamped and the memory effect on Γ1 is taken into account, the vertical 

deflection 𝑦(𝑥, 𝑡) of the thin elastic plate satisfies the following partial differential equation:  
 

𝑦𝑡𝑡 (𝑥, 𝑡) + Δ2𝑦(𝑥, 𝑡) = 0,    in    Ω × ℝ+,  (1.1a) 

𝑦(𝑥, 𝑡) = ∂𝑣𝑦(𝑥, 𝑡) = 0,    on    Γ0 × ℝ+,  (1.1b) 

ℬ1𝑦(𝑥, 𝑡) − ∫ ‍
∞

0
𝑔′(𝑠) ∂𝑣[𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)]d𝑠 = 0,    on    Γ0 × ℝ+, (1.1c) 

ℬ2𝑦(𝑥, 𝑡) + ∫ ‍
∞

0
𝑔′(𝑠)[𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)]d𝑠 = 𝑢(𝑥, 𝑡),    on    Γ1 × ℝ+, (1.1d) 

𝑦(𝑥, 0+) = 𝑦0(𝑥),    𝑦𝑡(𝑥, 0+) = 𝑦1(𝑥),  (1.1e) 

𝑦(𝑥, −𝑠) = 𝜗(𝑥, 𝑡),    𝑓𝑜𝑟    0 < 𝑠 < ∞,  (1.1f) 
 

where 𝑔 is the relaxation function, 𝑢 is the boundary control, 𝑦0 , 𝑦1 , 𝜗 are the given initial conditions. ℬ1 , ℬ2 
are the following boundary operators:  

ℬ1𝑦 = Δ𝑦 + (1 − 𝜇)(2𝑣1𝑣2

∂2𝑦

∂𝑥1 ∂𝑥2
− 𝑣1

2
∂2𝑦

∂𝑥2
2 − 𝑣2

2
∂2𝑦

∂𝑥1
2),

ℬ2𝑦 = ∂𝑣Δ𝑦 + (1 − 𝜇) ∂𝜏[(𝑣1
2 − 𝑣2

2)
∂2𝑦

∂𝑥1 ∂𝑥2
+ 𝑣1𝑣2(

∂2𝑦

∂𝑥2
2 −

∂2𝑦

∂𝑥1
2)],

 

𝑣 = (𝑣1 , 𝑣2) is the unit outer normal vector, 𝜏 = (−𝑣2, 𝑣1) is the unit tangent vector, and 0 < 𝜇 <
1

2
 is the Poisson 

ratio.  
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Throughout the article, we assume always that the function 𝑔(⋅) satisfies the following conditions: 
 

 𝑔1     𝑔(⋅) ∈ 𝐶2[0,∞); 
 𝑔2     𝑔 𝑡 > 0,    𝑔′ 𝑡 < 0,    𝑔′ ′ 𝑡 ≥ 0 for 𝑡 ≥ 0; 
 𝑔3     𝑔(∞) > 0; 
 𝑔4 𝑔

′ 𝑡 ≥ −𝑘𝑔′ ′ 𝑡 forsome 𝑘 > 0 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑡 ≥ 0. 
 

Condition (𝑔2) implies that the memory of the boundary is strictly decreasing and the rate of memory loss is 

also decreasing. From (𝑔2), we have also that both 𝑔(∞) and 𝑔′(∞) exist, 𝑔′(∞) ≥ 0. Condition (𝑔3) means that the 

material behaves like an elastic solid at 𝑡 = ∞. Condition (𝑔4) implies that 𝑔′(𝑡) decays exponentially, in particular, 

𝑔′(∞) = 0.  
 

The energy corresponding to the system (1) is defined by  
 

𝐸(𝑡) =
1

2
𝑎(𝑦(⋅, 𝑡)) + ∫ ‍

Ω
|𝑦𝑡(𝑥, 𝑡)|2d𝑥 − ∫ ‍

∞

0 ∫ ‍
Γ1

𝑔′(𝑠)[| ∂𝑣(𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠))|2

+|𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)|2]dΓd𝑠            (1.2)                    

where 𝑎(𝑤) = 𝑎(𝑤, 𝑤) and  
 

𝑎(𝑤1 , 𝑤2) = ∫ ‍
Ω

[
∂2𝑤1

∂𝑥1
2

∂2𝑤2

∂𝑥1
2 ] +

∂2𝑤1

∂𝑥2
2

∂2𝑤2

∂𝑥2
2 + 𝜇(

∂2𝑤1

∂𝑥1
2

∂2𝑤2

∂𝑥2
2 ] +

∂2𝑤1

∂𝑥2
2

∂2𝑤2

∂𝑥1
2 )

+2(1 − 𝜇)
∂2𝑤1

∂𝑥1 ∂𝑥2

∂2𝑤2

∂𝑥1 ∂𝑥2
]d𝑥,    ∀𝑤1, 𝑤2 ∈ 𝐻2(Ω).

         (1.3) 

 
2. Well-Posedness of the System with Feedback Control 
 

In this section, we shall formulate the system (1.1a-1.1f) into a standard linear infinite dimensional space with 
a output feedback control. Let  

 

𝑊 = {𝑤 ∈ 𝐻2(Ω)|𝑤|Γ0
= ∂𝑣𝑤|Γ0

= 0}, 

∥ 𝑤 ∥𝑊
2 = 𝑎(𝑤),    ∀𝑤 ∈ 𝑊, 

 

and define the "boundary memory space" by  
 

𝑍 = 𝐿2(0,∞; |𝑔′(. )|; 𝐻1(Γ1)), 

∥ 𝑧 ∥𝑍
2 =  ‍

∞

0

 𝑔′ 𝑠   ∥ ∂𝑣𝑧 𝑠 ∥𝐿2 Γ1 
2 +∥ 𝑧 𝑠 ∥𝐿2 Γ1 

2  d𝑠, ∀𝑧 ∈ 𝑍. 

Set  

ℋ = 𝑊 × 𝐿2(Ω) × 𝑍 
equipped with the inner product induced norm  

∥ (𝑤, 𝑣, 𝑧) ∥ℋ
2 =∥ 𝑤 ∥𝑊

2 +∥ 𝑣 ∥𝐿Ω
2

2 +∥ 𝑧 ∥𝑍
2 ,    ∀(𝑤, 𝑣, 𝑧) ∈ ℋ. 

It is easy to see that ℋ is a Hilbert space. 
 

Remark We have that 𝑎(⋅)
1

2  is an equivalent norm on 𝑊  since Γ0 ≠ ∅  has positive boundary measure. 

Moreover, it is obvious that (∥ ∂𝑣𝑧 ∥𝐿2(Γ1)
2 +∥ 𝑧2 ∥𝐿2(Γ1)

2 )
1

2  is an equivalent norm on 𝐻1(Γ1) . In fact, if ∥

∂𝑣𝑧 ∥𝐿2(Γ1)
2 +∥ 𝑧2 ∥𝐿2(Γ1)

2 = 0, then 𝑧 = ∂𝑣𝑧 = 0 on Γ1. It follows that ∇𝑧= 𝑣 ∂𝑣𝑧 = 0 on Γ1. Therefore, 𝑧 = 0 in 

𝐻1(Γ1).  
 

Next we introduce some operators (Ref.9) as follows: 
 

(i) We set  
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𝐿𝑧(𝑠) =  ‍
∞

0

𝑔′(𝑠)𝑧(𝑠)d𝑠,

𝒜0 = Δ2 ,    𝒟(𝒜0) = {𝑤 ∈ 𝐻4(Ω) ∩ 𝑊|ℬ1𝑤|Γ1
= ℬ2𝑤|Γ1

= 0}.

 

 

It is easy to know that 𝒜0 is a positive self-adjoint operator on 𝐿2(Ω).  

(ii) The Green operators 𝑁1 and 𝑁2 are introduced to describe the boundary conditions,  

𝑁1𝑔 = 𝑕 ⇔

 
 

 
Δ2𝑕 = 0, in      Ω,
𝑕 = ∂𝑣𝑕 = 0, on    Γ0 ,
ℬ1𝑕 = 𝑔, on    Γ1 ,
ℬ2𝑕 = 0, on    Γ1 ,

  

𝑁2𝑔 = 𝑕 ⇔

 
 

 
Δ2𝑕 = 0, in      Ω,
𝑕 = ∂𝑣𝑕 = 0, on    Γ0 ,
ℬ1𝑕 = 0, on    Γ1 ,
ℬ2𝑕 = 𝑔, on    Γ1 .

  

 

In terms of the regularity theory for the elliptic equations (Ref.6), we see that  
 

𝑁1: 𝐿2 Γ1 → 𝐻
5

2 Ω    is continuous,

𝑁2: 𝐿2 Γ1 → 𝐻
7

2 Ω    is continuous.
 

 

By these operators defined above, we may rewrite the system (1.1a-1.1f) as  
 

 𝑦𝑡𝑡 (⋅, 𝑡) + 𝒜0[𝑦(⋅, 𝑡) − 𝑁1𝐿𝑧(⋅, 𝑡, 𝑠) + 𝑁2𝐿𝑧(⋅, 𝑡, 𝑠) − 𝑁2𝑢(⋅, 𝑡, 𝑠)] = 0,(2.1) 
 

Where 𝑧(⋅, 𝑡, 𝑠) = 𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠), 𝑥 ∈ Γ1 . Considering 𝐿2(Ω)  as the pivot space: [𝒟(𝒜0)] ⊂ 𝐿2(Ω) ⊂

[𝒟(𝒜0)]′ and extending the 𝒜0 to be 𝒜 
0: 𝐿2(Ω) → [𝒟(𝒜0)]′, we can rewrite (4) as  

𝑦𝑡𝑡 (⋅, 𝑡) = −𝒜 
0𝑦(⋅, 𝑡) + 𝒜 

0𝑁1𝐿𝑧(⋅, 𝑡) − 𝒜 
0𝑁2𝐿𝑧(⋅, 𝑡) + 𝒜 

0𝑁2𝑢(⋅, 𝑡) ∈ [𝒟(𝒜0)]′. (2.2) 

Thus we can write the system (1.1a-1.1f) as a standard form of linear infinite-dimensional system in ℋ 

 𝑌 (𝑡) = 𝒜𝑌(𝑡) + 𝐵𝑢 (2.3) 
 

  Where  
 

𝑌(𝑡) =  

𝑦(⋅, 𝑡)
𝑦𝑡(⋅, 𝑡)
𝑧(⋅, 𝑡, 𝑠)

 ,    𝑧(⋅, 𝑡, 𝑠) = 𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠), 

 

𝒜 =  

0 𝐼 0
−𝒜 

0 0 𝒜 
0𝑁1𝐿 − 𝒜 

0𝑁2𝐿

0 𝐼 −
∂

∂𝑠

 ,    𝒟(𝒜) = {𝑌 ∈ ℋ|𝒜𝑌 ∈ ℋ}, 

 

  And  
 

𝐵𝑢 =  
0
𝒜 

0𝑁2𝑢
0

 ,    𝐵: 𝐿2 Γ1 →  𝒟 𝒜∗  ′is continuous. 

 

 
 
 
 
Finally, a direct computation gives  
 



4                                                                 American Review of Mathematics and Statistics, Vol. 6(2), December 2018 
 

 

(𝑁2
∗𝒜0𝑓, 𝑔)𝐿2(Γ1) = (𝒜0𝑓, 𝑁2𝑔)𝐿2(Ω) = (Δ2𝑓, 𝑁2𝑔)𝐿2(Ω)

=  ‍
Ω

𝑓Δ2 𝑁2𝑔 d𝑥 −  ‍
Γ1

 𝑓ℬ2 𝑁2𝑔 − ∂𝑣𝑓ℬ1 𝑁2𝑔  dΓ

+  ‍
Γ1

[ℬ2𝑓(𝑁2𝑔) − ℬ1𝑓 ∂𝑣(𝑁2𝑔)]dΓ

= − ‍
Γ1

𝑓𝑔dΓ,

 

 

For all 𝑓 ∈ 𝒟(𝒜0) and 𝑔 ∈ 𝐿2(Γ1). Therefore, 𝑁2
∗(𝒜 

0)𝑓 = 𝑁2
∗𝒜0𝑓 = −𝑓|Γ1

, 𝑓 ∈ 𝒟(𝒜0). It follows that  
 

 𝐵∗  
𝑤
𝑣
𝑧

 = −𝑣|Γ1
,    ∀  

𝑤
𝑣
𝑧

 ∈ 𝒟(𝒜∗). (2.4) 

 

Now, let us consider a feedback control so that the input and output are collocated (Ref.7):  
 

 𝑢 = −𝑘𝐵∗(𝑦, 𝑦𝑡 , 𝑧)𝑇 = 𝑘𝑦𝑡 |Γ1
,    𝑘 ≥ 0. (2.5) 

 

The closed-loop system under this output feedback then becomes  
 

𝑦𝑡𝑡 (𝑥, 𝑡) + Δ2𝑦(𝑥, 𝑡) = 0,    in    Ω × ℝ+,  (2.6a) 

𝑦(𝑥, 𝑡) = ∂𝑣𝑦(𝑥, 𝑡) = 0,    on    Γ0 × ℝ+,  (2.6b) 

ℬ1𝑦(𝑥, 𝑡) − ∫ ‍
∞

0
𝑔′(𝑠) ∂𝑣[𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)]d𝑠 = 0,    on    Γ0 × ℝ+, (2.6c) 

ℬ2𝑦(𝑥, 𝑡) + ∫ ‍
∞

0
𝑔′(𝑠)[𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)]d𝑠 = 𝑘𝑦𝑡(𝑥, 𝑡),    on    Γ1 × ℝ+, (2.6d) 

𝑦(𝑥, 0+) = 𝑦0(𝑥),    𝑦𝑡(𝑥, 0+) = 𝑦1(𝑥),  (2.6e) 

𝑦(𝑥, −𝑠) = 𝜗(𝑥, 𝑡).    for    0 < 𝑠 < ∞,  (2.6f) 
 

The initial boundary problem (2.6) can be written as an evolutionary equation in ℋ:  
 

𝑌 (𝑡) = 𝒜𝑌(𝑡),    𝑌(0) = 𝑌0 
 

Where 𝑌 = (𝑦, 𝑦𝑡 , 𝑧), 𝑌0 = (𝑦0 , 𝑦1 , 𝑦0 − 𝜗) and  
 

𝒜 =  

0 𝐼 0
−Δ2 0 0

0 𝐼 −
∂

∂𝑠

  

With the domain  
 

𝒟(𝒜) =

 
 
 

 
 

(𝑤, 𝑣, 𝑧) ∈ ℋ
 

 

Δ2𝑤 ∈ 𝐿2(Ω), 𝑣 ∈ 𝑊, 𝑧(⋅) ∈ 𝐻1(0,∞; |𝑔′(⋅)|; 𝐻1(Γ1)),

𝑧(0) = 0, [ℬ1𝑤 −  ‍
∞

0

𝑔′(𝑠) ∂𝑣𝑧(𝑠)d𝑠]Γ1
= 0,

[ℬ2𝑤 +  ‍
∞

0

𝑔′(𝑠)𝑧(𝑠)d𝑠]Γ1
= 𝑘𝑣|Γ1

,

 

 
 
 

 
 

 

 

Where  

𝐻1(0,∞; |𝑔′(⋅)|; 𝐻1(Γ1)) = {𝑧(𝑠) ∈ 𝑍|
∂

∂𝑠
𝑧(𝑠) ∈ 𝑍}. 

 

The following theorem ensures that the system (2.6) is well-posed in ℋ. 
 

Theorem 2.1. Assume that the function 𝑔 satisfies (𝑔1) through (𝑔3) and 𝑘 ≥ 0. Then the operator 𝒜 

generates a 𝐶𝑜-semigroup 𝑆(𝑡) of contraction on ℋ. 
 

Proof. We first prove that ℛ(𝐼 − 𝒜) = ℋ. Namely, we need to show that the following system of the equations  
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 𝑤 − 𝑣 = 𝑓, (2.7a) 

 𝑣 + Δ2𝑤 = 𝑔, (2.7b) 

 𝑧(𝑠) − 𝑣 +
∂

∂𝑠
𝑧(𝑠) = 𝑕(𝑠) (2.7c) 

 

has a solution (𝑢, 𝑣, 𝑧) ∈ 𝒟(𝒜) for every (𝑓, 𝑔, 𝑕) ∈ ℋ. In fact, it follows from (2.6) that  

 𝑣 = 𝑤 − 𝑓 ∈ 𝑊, (2.8a) 

 𝑤 + Δ2𝑤 = 𝑓 + 𝑔 ∈ 𝐿2(Ω), (2.8b) 

 𝑧(𝑠) = (1 − 𝑒−𝑠)𝑤 + (1 − 𝑒−𝑠)𝑓 + ∫ ‍
∞

0
𝑒𝜏−𝑠𝑕(𝜏)d𝜏 ∈ 𝑍. (2.8c) 

 

Therefore, 𝑣 ∈ 𝑊 and 𝑧(⋅) ∈ 𝐻1(0,∞; |𝑔′(⋅)|; 𝐻1(Γ1)), 𝑧(0) = 0. Furthermore, by (11b)-(11c) we have that for any 

𝑤 ∈ 𝑊  satisfying Δ2𝑤 ∈ 𝐿2(Ω)  and ℬ1𝑤 − ∫ ‍
∞

0
𝑔′(𝑠) ∂𝑣𝑧(𝑠)d𝑠 = 0, ℬ2𝑤 + ∫ ‍

∞

0
𝑔′(𝑠)𝑧(𝑠)d𝑠 = 𝑘𝑣 , it has for all 

𝜙 ∈ 𝑊,  
 

∫ ‍
Ω

𝑤𝜙d𝑥 + 𝑎(𝑤, 𝜙) + ∫ ‍
Γ1

[(𝑘𝑤 + 𝑋𝑤)𝜙 + 𝑋 ∂𝑣𝑤𝜙]dΓ

= ∫ ‍
Ω

(𝑓 + 𝑔)𝜙d𝑥 + ∫ ‍
Γ1

[(𝑘𝑓 + 𝑋𝑓 + Ψ) ∂𝑣𝜙]dΓ
 (2.9) 

 
 

Where  

𝑋 = − ‍
∞

0

𝑔′(𝑠)(1 − 𝑒−𝑠)d𝑠 ≥ 0 

And  
 

Ψ =  ‍
∞

0

𝑔′(𝑠)  ‍
𝑠

0

𝑒𝜏−𝑠𝑕(𝜏)d𝜏d𝑠. 

 

We see from the Lax-Milgram theorem (Ref.8) that the equation (2.9) admits a unique solution 𝑤 ∈ 𝑊. 
Combining this with (2.8𝑎)  and (2.8c), we see that (𝑤, 𝑣, 𝑧) ∈ 𝒟(𝒜)  solves the equation (𝐼 − 𝒜)(𝑤, 𝑣, 𝑧) =
(𝑓, 𝑔, 𝑕).  
 

Next, for any 𝑌 = (𝑤, 𝑣, 𝑧) ∈ 𝒟(𝒜), it has  

ℛ𝑒(𝒜𝑌, 𝑌)ℋ

= −𝑘 ∫ ‍
Γ1

|𝑣|2𝑑Γ−
1

2
∫ ‍
∞

0 ∫ ‍
Γ1

𝑔′′(𝑠)(|𝑧(𝑠)|2 + | ∂𝑣𝑧(𝑠)|2)dΓd𝑠 ≤ 0.
 (2.10) 

 

Hence 𝒜 is dissipative. We see from the theorem 1.4.6 of Ref.8 that 𝒟(𝒜) is dense in ℋ. Therefore, we can 

conclude by Lumer-Phillips theorem that 𝒜 generates a 𝐶𝑜-semigroup of contractions on ℋ. The proof of Theorem 
2.1 is complete now.  □ 
 

3 A Variable Structural Control for the System 
 

Let us establish a sliding model control for the system (??)  

  
∂𝑌

∂𝑡
= 𝒜𝑌 + 𝐵𝑤 𝑌, 𝑡 

𝑌(0) = 𝑌0

  (3.1) 

 

where 𝐵 is a bounded linear operator from ℋ to ℋ, 𝑤(𝑌, 𝑡) is the control of the system (3.1) that is not 

continuous on the manifold 𝑆 = 𝐶𝑌 = 0, and 𝐶 is a bounded linear operator with 𝑆 = 𝑆(𝑌) = 𝐶𝑌 ∈ 𝑅𝑛 . 

Now, we consider the 𝛿 -neighborhood of sliding mode 𝑆 = 𝐶𝑌 = 0, where 𝛿 > 0 is an arbitrary given positive 

number. Using a continuous control 𝑤 (𝑧, 𝑡) to replace 𝑤(𝑧, 𝑡) in the system 3.1 yields  
 

  
𝑌 = 𝒜𝑌 + 𝐵𝑤 (𝑌, 𝑡)
𝑌(0) = 𝑌0

  (3.2) 

 

where𝑌 = ∂𝑌/ ∂𝑡, and the solution of (3.2) belongs to the boundary layer ∥ 𝑆(𝑌) ∥≤ 𝛿 
 



6                                                                 American Review of Mathematics and Statistics, Vol. 6(2), December 2018 
 

 

Let 𝑆 (𝑌) = 𝐶𝑌 = 0. Applying 𝐶 to the first equation of (3.1) leads to the following the equivalent control:  
 

𝑤𝑒𝑞 (𝑌, 𝑡) = −(𝐶𝐵)−1𝐶(𝒜𝑌) 
 

With assumption that (𝐶𝐵)−1 exists. Substitute 𝑤𝑒𝑞 (𝑌, 𝑡) into 3.1 to find  

 

 𝑌 = [𝐼 − 𝐵(𝐶𝐵)−1𝐶]𝒜𝑌. (3.3) 

Denote 𝑃 = 𝐵(𝐶𝐵)−1𝐶 and 𝒜0 = (𝐼 − 𝑃)𝒜, then 3.1 becomes  

 𝑌 = 𝒜0𝑌,    𝑌(0) = 𝑌0 (3.4) 

In the rest part of this paper, we are going to show that the actual sliding mode 𝑍(𝑌) will approach uniformly 

to the ideal sliding mode 𝑍(𝑌) under certain conditions. 
 

Lemma 3.1 If (𝐶𝐵)−1  is a compact operator and 𝑃𝒜 = 𝒜𝑃 , then 𝒜0 = (𝐼 − 𝑃)𝒜  generates a 𝐶0 -

semigroup 𝑇2(𝑡) in ℋ and 𝑇2(𝑡) = (𝐼 − 𝑝)𝑇1(𝑡), where 𝑇1(𝑡) is the 𝐶0-semigroup generated by 𝒜. 
 

Proof. Since (𝐶𝐵)−1  is a compact operator, 𝐵  and 𝐶  are bounded linear operators, we see from the 

definition of 𝑃 that 𝑃 is compact, and therefor the range of 𝐼 − 𝑃 is a closed subspace of ℋ . Since 𝑃2 = 𝑃  and 

(1 − 𝑃)2 = 𝐼 − 𝑃, 𝐼 − 𝑃 can be viewed as the identity operator on (𝐼 − 𝑃)ℋ. It can be easily seen that 𝑇2(𝑡) =
(𝐼 − 𝑃)𝑇1(𝑡) is a 𝐶0-semigroup in (𝐼 − 𝑃)ℋ. 
 

Next, we shall prove that the infinitesimal generator of 𝑇2(𝑡) is (𝐼 − 𝑃)𝒜 and 𝒟((𝐼 − 𝑃)𝒜) = (𝐼 − 𝑃)𝒟(𝒜). 

In fact, for every 𝑥 ∈ (𝐼 − 𝑃)𝒟(𝒜), there is a 𝑥1 ∈ 𝒟(𝒜) such that 𝑥 = (𝐼 − 𝑃)𝑥1. It should be noted that 𝑇1(𝑡) 

and 𝐼 − 𝑃 are commutative because 𝒜 and 𝑃 are commutative. We see that  
 

lim
𝑡→0+

𝑇2 𝑡 𝑥 − 𝑥

𝑡
= lim

𝑡→0+

 𝐼 − 𝑃 𝑇1 𝑡  𝐼 − 𝑃 𝑥1 −  𝐼 − 𝑃 𝑥1

𝑡
 

= lim
𝑡→0+

(𝐼 − 𝑃)2𝑇1(𝑡)𝑥1 − (𝐼 − 𝑃)𝑥1

𝑡
 

= lim
𝑡→0+

 𝐼 − 𝑃 𝑇1 𝑡 𝑥1 −  𝐼 − 𝑃 𝑥1

𝑡
 

= (𝐼 − 𝑃) lim
𝑡→0+

𝑇1(𝑡)𝑥1 − 𝑥1

𝑡
 

= (𝐼 − 𝑃)𝒜𝑥1 . 
 

Let 𝒜  be the infinitesimal generator of 𝑇2(𝑡). Since the limit on the left exists, we can assert that 𝑥 ∈ 𝒟(𝒜 ) 

and (𝐼 − 𝑃)𝒟(𝒜) ⊆ 𝒟(𝒜 ). 
 

On the other hand, for any 𝑥 ∈ 𝒟(𝒜 ), since 𝒟(𝒜 ) ⊆ (𝐼 − 𝑃)ℋ, there exists 𝑥 ∈ ℋ, such that 𝑥 = (𝐼 − 𝑃)𝑥 , and  

lim
𝑡→0+

𝑇2(𝑡)𝑥 − 𝑥

𝑡
= lim

𝑡→0+

𝑇2(𝑡)(𝐼 − 𝑃)(𝑥 ) − (𝐼 − 𝑃)(𝑥 )

𝑡
 

= lim
𝑡→0+

(𝐼 − 𝑃)𝑇1(𝑡)𝑥 − (𝐼 − 𝑃)𝑥 

𝑡
 

= (𝐼 − 𝑃) lim
𝑡→0+

𝑇1(𝑡)𝑥 − 𝑥 

𝑡
 

= (𝐼 − 𝑃)𝒜𝑥 . 
 

Since the limit of the left hand side exists, and so the limit of the right hand side exists, and 𝑥 ∈ 𝒟(𝒜) which 

implies that 𝒟(𝒜 ) ⊆ (𝐼 − 𝑃)𝒟(𝒜). Thus, 𝒟(𝒜 ) = (𝐼 − 𝑃)𝒟(𝒜)and 𝒜 , the infinitesimal generator of 𝑇2(𝑡), is 

(𝐼 − 𝑃)𝒜. 
The proof of the lemma is complete. 
Theorem 3.2 Suppose that in the system 3.1, 

1. (𝐶𝐵)−1 exists and it is compact,  

2. 𝑃𝒜 = 𝒜𝑃, where 𝑃 = 𝐵(𝐶𝐵)−1𝐶.  
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Then for any solution 𝑌(𝑡) of the system 3.4 satisfying𝑆(𝑌0) = 0, 𝑌0 ∈ 𝒟(𝒜0) and ∥ 𝑌0 − 𝑌0 ∥≤ 𝛿, 𝑌0 ∈ 𝒟(𝒜), 
we have  
 

lim
𝛿→0

∥ 𝑧(𝑡) − 𝑧(𝑡) ∥= 0 

Uniformly on [0, 𝑇] for any positive number 𝑇. 
 

Proof. We see from the Theorem 2.1 and Lemma 3.1 that 𝒜  and 𝒜0 = (𝐼 − 𝑃)𝒜  are infinitesimal 

generators of 𝐶0-semigroups 𝑇1(𝑡) and 𝑇2(𝑡) respectively. It follows from theory of semi group of linear operators 

that there are positive constants 𝑀1 , 𝑀2 , 𝜔1 and 𝜔2 such that  
 

 ∥ 𝑇1(𝑡) ∥≤ 𝑀1𝑒
𝜔1𝑡 ,    ∥ 𝑇2(𝑡) ∥≤ 𝑀2𝑒

𝜔2𝑡 .    (0 ≤ 𝑡 ≤ 𝑇) (3.5) 

In the boundary layer ∥ 𝑇1(𝑡) ∥≤ 𝛿, the equivalent control is  

 𝑤𝑒𝑞 (𝑌, 𝑡) = −(𝐶𝐵)−1𝐶𝒜𝑌 + (𝐶𝐵)−1𝐶𝑌  (3.6) 

Substitute (3.6) into (3.1) to find  

 𝑌 = (𝐼 − 𝑃)𝒜𝑌 + 𝑃𝑌  (3.7) 
Hence, the solution of (3.7) can be expressed as follows:  

 𝑌(𝑡) = 𝑇2(𝑡)𝑌0 + ∫ ‍
𝑡

0
𝑇2(𝑡 − 𝑠)𝑃𝑌 (𝑠)d𝑠, (3.8) 

And the solution of (3.4) can be written as  

 𝑌(𝑡) = 𝑇2(𝑡)𝑌0 (3.9) 
 

Substracting (3.9) from (3.8) yields  

 𝑌(𝑡) − 𝑌(𝑡) = 𝑇2(𝑡)(𝑌0 − 𝑌0) + ∫ ‍
𝑡

0
𝑇2(𝑡 − 𝑠)𝑃𝑌 (𝑠)𝑑𝑠 (3.10) 

Since𝑃𝒜 = 𝒜𝑃 , we see that 𝑃𝑇1(𝑡) = 𝑃𝑇1(𝑡) . It should be emphasized that (𝐼 − 𝑃)𝑃 = 0  and 𝑇2(𝑡) = (𝐼 −
𝑃)𝑇1(𝑡), and consequently,  
 

 ‍
𝑡

0

𝑇2(𝑡 − 𝑠)𝑃𝑌 (𝑠)𝑑𝑠 =  ‍
𝑡

0

(𝐼 − 𝑃)𝑇1(𝑡 − 𝑠)𝑃𝑌 (𝑠)d𝑠 

=  ‍
𝑡

0

𝑇1(𝑡 − 𝑠)(𝐼 − 𝑃)𝑃𝑌 (𝑠)d𝑠 

= 0 
 

It can be obtained from (3.10) and (3.5) that  
 

∥ 𝑌(𝑡) − 𝑌(𝑡) ∥≤∥ 𝑇2(𝑡) ∥∥ 𝑌0 − 𝑌0 ∥≤ 𝑀2𝑒
𝜔2𝑇 ∥ 𝑌0 − 𝑌 ∥, 

 

Since∥ 𝑌0 − 𝑌0 ∥≤ 𝛿, we have  

∥ 𝑌(𝑡) − 𝑌(𝑡) ∥≤ 𝑀2𝑒
𝜔2𝑇𝛿. 

Thus,  

lim
𝛿→0

∥ 𝑌(𝑡) − 𝑌0 ∥= 0. 
 

The proof of the theorem is complete. 
 

We see from the Theorem 3.2 that the actual sliding mode can be approximated by ideal sliding mode in any accuracy. 
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