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Normal CR-Submanifolds of a Quasi Kaehlerian Manifold

Yong Wan' & Weizhi Chen?

Abstract;

In this paper, we establish a mathematical identity, which makes it possible to use the Gauss formula and
Weingarten formula in the anti invariant distribution.Then we give some sufficient and necessary conditions for

normal CR-submanifold of a quasi Kaehlerian manifold by both tensor S and S~ of type (1, 2).
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1 Introduction

In this paper, all manifolds and morphisms are supposed to be differentiable of class C . Let M be a real
n-diemensional connected differentiable manifold. T(M) and F(M) are respectively the tangle bundle to M and
the algebra of differentiable functions on M. Also, we denote by I'(H) the module of differentiable sections of a
vector bundle H .

A linear connection on M isa mapping
V: TTM)xC(TM) > T(TM): (X, Y)— VxY
satisfying the following conditions

(1)€f(x)+Y 2)= fVxZ+VyZ ,
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2 §x(fY +7Z)= fVxY + (XF)Y +VxZ , for any fe F(M) and X, Y, Z eF(TM) . The
operetor V xis called the covariant differentiation with respect to X . Thus for any tensor field ® of type (0, s) or

(1, s) we define the covariant differentiation Vx® of © with respect to X by

(€X®)(X17 Xzy...y XS):€X(®(X17 Xzy...y XS))_Z®(X1""’€XXi""’ XS),(ll)

i=1

for any X, eF(I'M) ,i=1, 2, .., S. A linear connection V on M s said to be a Riemannian connection if
Riemannian metric g satisfying Xg(Y, Z)=g(VxY, Z)+g(Y, VxZ), (1.2)
forany X, Y e F(TM) . An almost complex structure on M s a tensor field J of type (1, 1) on M such that at
every point X eM we have J? =—1 , where | denotes the identify transformation of TXM. A manifold M
endowed with an almost complex structure is called an almost complex manifold. The covariant derivative of J is
defined by (VxJ)Y = VxJY —JV«Y, (1.3)
forany X, Y e F(TM). More, we define the torsion tensor of J or the Nijenhuis tensor of J by

[J, JICK, Y)=[IX, IY]-[X, Y]-J[IX, Y]-J[X, JY], (1.4
for any X, Y e F(TM) , where [X, Y] is the Lie bracket of vector fields X and Y , that is,
[Xs Y] =VxY —VyX . A Hermitian metric on an almost complex manifold M is a Riemannian metric g
satisfying g(JX, JY)=g(X, Y), (1.5)
forany X, Y e F(TM). An almost complex manifold endowed with a Hermitian metric is said to be an almost
Hermitian manifold. Definition 1.1([3]). An almost Hermitian manifold M with Levi-Civita connection V is called a
quasi Kaehlerian manifold if we have (Vx J)Y +(VxJ)JY =0, (1.6)
forany X, Y e F(TM). Definition 1.2([1]). An almost Hermitian manifold M with Levi-Civita connection V is
called a Kaehlerian manifold if we have Vx J = 0, .7)
for any X eF(TM). Obviously, a Kaehlerian manifold is a quasi Kaehlerian manifold. Let M be an m -
dimensional Riemannian submanifold of an n -dimensional Riemannian manifold M . We denote by TM * the
normal bundle to M and by g both metric on M and M. Also, we denote by V the Levi-Civita connection on

M, denote by V the induced connection on M , and denote by V* the induced normal connection on M .

Then, forany X, Y e T(TM) we have V xY =V,Y+h(X, Y), (1.8)
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where h: T(TM)xT(TM) — T'(TM ") is a normal bundle valued symmetric bilinear form on I'(TM). The
equation (1.8) is called the Gauss formula and h is called the second fundamental form of M . Now, for any

X el'(TM) and V e T(TM ) we denote by — A, X and V,V the tangent part and normal part of VxV
respectively. Then we have VxV =—A, X + VLV . (1.9
Thus, forany V e I'(TM ) we have a linear operator, satisfying

g(A X Y)=g(X: AY)=g(h(X, Y). V). (L.10)
The equation (1.9) is called the Weingarten formula. An m -dimensional distribution on a manifold M isa mapping
D defined on M, which assignes to each point X of M an m -dimensional linear subspace D, of TXM. A vector
field X on M belongs to D if we have X, € D, for each X e M . When this happens we write X € I'(D). The

distribution D is said to be differentiable if for any X M there exist m differentiable linearly independent vector

fields X, € I'(D) in a neighborhood of X. From now on, all distributions are supposed to be differentiable of class

C™. Definition 1.3([1]). Let M be a real n-dimensional almost Hermitian manifold with almost complex structure

J and with Hermitian metric g . Let M be a real m -dimensional Riemannian manifold isometrically immersed in
M . Then M is called a CR-submanifold of M if there exist a differentiable distribution D: X — D, cT M,

on M satisfying the following conditions: (1) D is holomorphic, thatis, J(D,) = D, , foreach xe M,

(2)the complementary orthogonal distribution D*: x — D; < T M, is anti-invariant, that is, J(D; ) cT,M *,
for each X e M. Now let M be an arbitrary Riemannian manifold isometrically immersed in an almost Hermitian
manifold M . For each vector field X tangentto M , we put JX =¢X + wX , (1.1

where ¢X and X are respectively the tangent part and the normal part of JX . We denote by P and Q

respectively the projection morphisms of TM to D and D™, that is,

X =PX +QX, (1.12)
forany X e I'(TM). Then we have
#X = JPX (1.13)
and
wX =JQX, (1.14)
forany X e I'(TM). Moreover, we have
¢* =-P (1.15)

and
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¢ +¢=0. (1.16)

Next, for each vector field V normal to M , we put
JV =BV +CV, (117
where BV and CV are respectively the tangent part and the normal part of JV .

We take account of the decompositon TM =D@D* ®JD*@®v . Obviously, we have
¢X eT(D), wX e'(JD*), BV eT(D")and CV eI'(v), forany X e '(TM) and
V eIC(JD* @v). Further, we obtain Bow =-Q.
The covariant derivative of ¢ is defined by
(V@)Y =V, ¢Y —¢V, Y, (1.18)
forany X, Y e I'(TM). On the other hand, the covariant derivative of @ is defined by
(Vi o)Y =ViaY -0V, Y, (1.19)

forany X, Y e I'(TM). The exterior derivative of @ is given by
do(X, Y)= %{v;wv _VioX —o(X YD}, (1.20)

forany X, Y e['(TM).

Remark: The more details of exterior derivative is founed in [2]. The Nijenhuis tensor of ¢ is defined by

[ 91X, Y)=[gX, @Y1+9°[X, YI-glgX, YI-g[X, ¢¥], (121)
forany X, Y e'(TM), where [ X, Y] is the Lie bracket of vector fields X and Y . We define two the tensor

fields S and S respectively by S(X, Y) =[¢ #1(X, Y)—2Bdw(X, Y), (1.22)

and S™(Y, X)=(L, @)X =[Y, #X]-9[Y, X], (1.23)

forany X, Y € I'(TM). Definition 1.4([1]). The CR-submanifold M is said to be normal if
S(X, Y)=0, (1.24)

forany X, Y € I'(TM). Definition 1.5. The CR-submanifold M is said to be mixed normal if
S(X, Y)=0, (1.25)

forany X e'(D), Y e(D").

2 Main Results

Lemma2.l. Let M bea quasi Kaehlerian manifold. Then we have
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(%J)Y-(?YJ)xz%J[J, X ), 2.1)

forany X, Y eF(TM).
Proof: Forany X, Y € F(TM) . From (1.4) and (1.3) we acquire

[J, 31X Y)=(VxIY =(Va )X +I(VyI)X —I(VxI)Y. (22
Using (2.2), (1.6) and (1.3) we have

[J, 1K, Y)=(VxI)IY = (VyI)IX +I(VyI)X = I(VxI)Y

=2J((VvI)X = (VxI)Y). (2.3)
(2.3) follows that (2.1) holds. Q.E.D.

Lemma 2.2. Let M be a quasi Kaehlerian manifold. Then we have

(V)Y = (Vi I)X :%[J, X Y), (2.4)

forany X, Y e F(TM) . Proof: Forany X, Y e F(TM) . From (1.6) we get

(gJX\])Y —(gJY\])X = —(ngJ)JzY +(€JYJ)J2X

=(VxJ)IY = (VyJI)IX. (2.5)
Using (1.3) in (2.5) we obtain
(V)Y =(Vy )X ==J(VxI)Y = (Vv I)X). (2.6)
(2.4) comes from (2.6). Q.E.D.

Lemma 2.3. Let M be a quasi Kaehlerian manifold. Then we have
(Vi)Y = A, X +Bh(X; Y)+V,Y +¢V oY
+ Bh(¢X, oY) —¢A, X + BVijY , (2.7)
(Vi)Y ==h(X, ¢Y)+Ch(X, Y)+h(#X; Y)+aV ,eY
+Ch(¢X, ¢Y)—wA, ¢X +CV Y (2.8)
forany X eI'(D), Y eI'(TM).
Proof: Forany X eI'(D), Y e '(TM). Using (1.6) and (1.3), we have
(VxJIY =IVxY)+(=VxY =JVxJY)=0. 2.9)
Taking into account (1.11), (2.9) becomes
(VxY +VxaoY)=JIVXY —=ViY —J(VixdY + VoY) =0.  (210)
Taking account of (1.8) and (1.9), (2.10) changes into
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V.Y +h(X, ¢Y)—A X +VioY -IV,Y -Ih(X, Y) -ViY —h(@X, Y)
— IV @Y —Ih(@X, #Y)+ A, ¢X —IV oY =0. (2.12)
According to (1.11) and (1.17), (2.11) turns into
VY +h(X, ¢Y)=A, X +VioY —¢V,Y —wV,Y —Bh(X, Y)-Ch(X, Y)
=V Y =h(gX; Y)=¢V 4 @Y —aV 4 ¢Y —Bh(gX, ¢Y)—Ch(¢X, ¢Y)
+ @A, X + oA, ¢X —BV 0¥ —CV 4 0Y =0. (2.12)
By comparing to the tangent part and the normal part in (2.12), we get
VY — A X =gV, Y —=Bh(X, Y)-V,Y —¢V , ¢Y —Bh(gX, ¢Y)
+ @A, X —BV 5 0 =0 (2.13)
And
h(X, ¢Y)+V oY —wV,Y -Ch(X, Y)-h(¢X, Y) —V 5 ¢Y —Ch(gX, ¢Y)
+ A, ¢X —CV 4 0Y =0. (2.14)
By (2.13) and (1.18) we have (2.7). Also, by (2.14) and (1.19) we get (2.8). Q.E.D.
Lemma 2.4([1]). Let M be a CR-submanifold of an almost Hermitian manifold M . Then we have
S(X: Y)=(Vud)Y =(Vy @)X +¢{(Vy9) X = (Vi #)Y}-B{(V @)Y - (V,0) X}, (2.15)
forany X, Y eI'(TM).
Lemma2.5. Let M be a CR-submanifold of a quasi Kaehlerian manifold M . Then we have

S(Xs Y)=A, X —gA, X — A oY +dA Y +((Vix J)Y —(V¢YJ)X)T

—%(/b(J[J, X V) —%B(J[J, I YY), (2.16)
forany X, Y eI'(TM).
Proof: Forany X, Y € I'(TM). Taking into account (1.3), (1.11), (1.8), (1.9) and (1.17), we have
(VxI)Y =V (@Y +oY)=I(V,Y +h(X, Y))
=V,oY +h(X, ¢Y)-A,X +V§coY
-V, Y —oV,Y —Bh(X, Y)-Ch(X, Y). (2.17)
By comparing to the tangent part and the normal part in (2.17), we obtain

(VxIY) =V, 4Y — A, X —¢V,Y —Bh(X, Y) (2.18)

and
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(VxI)Y)* =h(X, ¢Y)+ViaY —wV,Y -Ch(X, Y). (2.19)
Combining (1.18) and (2.18), we have

(V@)Y = A, X +Bh(X, Y)+((VxI)Y)". (2.20)
Combining (1.19) and (2.19), we get
(V@)Y ==h(X, ¢Y)+Ch(X, Y)+((VxJI)Y)". (2.21)

Taking account of (2.20) and (2.21), (2.15) becomes
(X V)= A dX + (Vo )Y)T =AY = (Vo )X)T + gAY +((Vv )X)T
— A X —p((VxI)Y)T =B((VxI)Y)" +B((VyI)X)". (2.22)
Combining (2.22) and (2.1), we obtain our conclusion (2.16).

Theorem2.1. Let M be a CR-submanifold of a quasi Kaehlerian manifold M . Then M is normal if and

only if we have
0=A, X —gA, X — A oY +dA Y + ((§¢x J)Y =(V, J)X)T
1 ;1 N
—E¢(J[J, JI(X5Y)) —EB(J[J’ JIXs YY), (2.23)
forany X, Y eI'(TM).
Proof: Taking account of Definition 1.4 and Lemmaz2.5, our conclusion holds.  Q.E.D. Corollary2.1. Let M be a
CR-submanifold of a Kaehlerian manifold M . Then M is normal if and only if we have
AyoX —gA X =AY +¢A,Y =0, (2.24)
forany X, Y € I'(TM). Proof: Since a Kaehlerian manifold M satisfies
VxJd =0, [J, J(X, Y)=0,
forany X, Y € I'(TM), taking account of Theorem2.1, Corollary2.1 holds. ~ Q.E.D.
Corollary2.2(Bejiancu[1]). Let M be a CR-submanifold of a Kaehlerian manifold M . Then M is normal if and only
if we have A, ¢X =¢A , X, (2.25)
forany X eI(D), Y eI'(D"). Theorem2.2. Let M be a CR-submanifold of a quasi Kaehlerian manifold M
and [J, J](X, Y)eIl(v), (2.26)
forany X, Y e '(TM). Then M is normal if and only if we have
Ay X+V,Yel(DY) (2.27)

and
h(X, Y)eI'(v), (2.28)
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forany X eI'(D), Y e(D").

Proof: Forany X eI'(D), Y eI'(D™). By using (2.26) in (2.16) we obatin

S(Xs Y)=A, X —gA, X +((VxI)Y)". (2.29)

Taking into about (1.8), (1.9), (1.11) and (1.17), (1.3) becomes

(Vi)Y = A, ¢X + VoY =gV Y =0V Y —Bh(¢X, Y)—Ch(¢X, Y). (2.30)

By comparing to the tangent part and the normal part in (2.30), we get

(Vi d)Y)T =—A, X — ¢V , Y —Bh(@X, Y). (2.31)
From (2.29) and (2.31), we obtain
S(X, Y)=—¢A, X =gV, Y —Bh(#X, Y). (2.32)

Suppose M is normal CR-submanifold of M . For any X el’'(D), Y eI(D") , then from (2.32) and
Definition1.4 we have ¢(A, X +V ,Y)=0 (2.33)
And Bh(¢X, Y)=0. (2.34)
From (2.33) we obtain (2.27), correspondingly, from (2.34) we get (2.28). Conversely, if (2.27) and (2.28) are sastified.
Now, we shall prove S=0 by means of the decomposion TM =D@D™" . First, for any
X eI(D), Y e’(D"), from (2.27) we obtain (2.33), correspondingly, from (2.28) we get (2.34). Taking account
of (2.33) and (2.34), (2.32) becomes S(X, Y)=0, VX e(D), Y eI'(D"). Next, forany X, Y eI(D), by
using (2.26), (2.16) changes into S(X, Y)=((VixJ)Y)" = (Vo J)X)"
=((Vx )Y = (VwI)X)T. (2.35)

From (2.4) and (2.26), (2.35) becomes S(X, Y)=0, VX, Y eI’(D). Finally, for any X, Y eI(D"), in
accordance with (2.26), (2.16) changes over S(X, Y)=-¢A,, X +4A,,Y €I'(D). (2.36)

VZ T'(D), on the basis of (2.36), (1.11) and (1.10), we have

9(S(Xs Y), Z)=9(=9A, Xs Z)+g(dAxY, Z)

=g(h(X, ¢2), aY)-g(h(Y, ¢Z), oY). (2.37)
Using (2.28) in (2.37), we get
g(S(X, Y), Z)=0. (2.38)

Thatis, S(X, Y)=0, VX, Y eI'(D).
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From the above three conclusions we know S(X, Y)=0, for any X, Y e '(TM). Thus, the CR-

submanifold M is normal. Q.E.D. Theorem2.3. Let M be a CR-submanifold of a quasi Kaehlerian manifold M

with following conditions satisfing V,Y € I'(D) (2.39)
And h(X, Y)eT(v), (2.40)

forany X eI'(D), Y eI’(D").Then M is mixed normal if and only if we have

S™(Y, X)=0, (2.41)

forany X eI'(D), Y e(D").

Proof: Forany X eI'(D), Y eI'(D™). According to (1.18), (2.15) becomes

S(X, Y)=0¢(@[X, Y]I-[¢X, Y])-B(V, @)Y +B(V,0)X. (2.42)

Taking into account (1.19), (2.8) and B - C =0, (2.42) changes into

S(X, Y)=0@[X, Y]-[¢X, Y])—Bh(¢X, Y)+BwA X —BoV, X . (243)

Taking account of (1.23), (2.40) and B o w = —Q, (2.43) changes over

S(X, Y)=¢S"(Y, X)-QA,,#X +QV, X . (2.44)

vU eI'(D"), combining (1.12), (1.10) and (2.40), we have

9(QA,#X: U)=g(A,¢X: U)=g(h(gX, U), @) =0. (2.45)
(2.45) leads to QA ,¢X =0, VX eI(D), Y eI(D"). (2.46)

Combining (2.44) and (2.46), we get S(X, Y)=¢S (Y, X)+QV,X, VX eT(D), Y e['(D"). (2.47)

Suppose M is mixed normal CR-submanifold of M . For any X e’(D), Y eI’(D"), then from (2.47) it follows

¢S (Y, X)=0 (2.48)
and
QV,X =0. (2.49)
Based on (2.48) we obtain
S™(Y, X)eI(DY), (2.50)

forany X eI(D), Y e’(D"). On the other hand, taking into account (2.39) and (2.49), (1.23) becomes
S(Y, X)=V X -V, Y —¢[Y, X]eI'(D), (2.51)

forany X eI'(D), Y e'(D"). Taking account of (2.50) and (2.51), we get that (2.41) holds.

Conversely, if (2.41) is sastified. Forany X e (D), Y eI'(D"), combinning (1.15) and (1.12), (1.23) changes into
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ST(Y, —¢X)=[Y, X]-glY, —¢X]=PIY, X]-4[Y, —¢X]+Q[Y, X]. (252)
By using (2.41) in (2.52), we have Q[Y, X]=0, VX eI(D), Y eI(D"). (2.53)
From (2.53) and (2.39), we obtain QV, X =0, VX eT'(D), Y eI(D"). (2.54)
Combining (2.41) and (2.54), (2.47) becomes S(X, Y)=0, VX eI(D), Y e(D"). (2.55)
Relying on Definition 1.5, M is mixed normal. Q.ED.
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