American Review of Mathematics and Statistics June 2017, Vol. 5, No. 1, pp. 58-67

ISSN: 2374-2348 (Print), 2374-2356 (Online)

Copyright © The Author(s). All Rights Reserved.

Published by American Research Institute for Policy Development

DOI: 10.15640/arms.v5n1a6

URL: https://doi.org/10.15640/arms.v5n1a6

Normal CR-Submanifolds of a Quasi Kaehlerian Manifold

Yong Wan¹ & Weizhi Chen²

Abstract:

In this paper, we establish a mathematical identity, which makes it possible to use the Gauss formula and Weingarten formula in the anti invariant distribution. Then we give some sufficient and necessary conditions for normal CR-submanifold of a quasi Kaehlerian manifold by both tensor S and S^* of type (1, 2).

Keywords: quasi Kaehlerian manifold, CR-submanifold, normal, connection

1 Introduction

In this paper, all manifolds and morphisms are supposed to be differentiable of class C^{∞} . Let \overline{M} be a real n-diemensional connected differentiable manifold. $T(\overline{M})$ and $F(\overline{M})$ are respectively the tangle bundle to \overline{M} and the algebra of differentiable functions on \overline{M} . Also, we denote by $\Gamma(H)$ the module of differentiable sections of a vector bundle H.

A linear connection on \overline{M} is a mapping

$$\overline{\nabla}: \ \Gamma(T\overline{M}) \times \Gamma(T\overline{M}) \to \Gamma(T\overline{M}); \ (X, Y) \to \overline{\nabla}_X Y$$

satisfying the following conditions

$$(1)\overline{\nabla}_{f(X)+Y}(Z)=f\overline{\nabla}_XZ+\overline{\nabla}_YZ\;,$$

¹ School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Hunan, P. R. China.E-mail:wanyong870901@foxmail.com.

² School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Hunan, P. R. China. E-mail: kalkuy@163.com.

(2) $\overline{\nabla}_X(fY+Z)=f\overline{\nabla}_XY+(Xf)Y+\overline{\nabla}_XZ$, for any $f\in F(\overline{M})$ and $X,Y,Z\in \Gamma(T\overline{M})$. The operetor $\overline{\nabla}_X$ is called the covariant differentiation with respect to X. Thus for any tensor field Θ of type (0, s) or (1, s) we define the covariant differentiation $\overline{\nabla}_X\Theta$ of Θ with respect to X by $(\overline{\nabla}_X\Theta)(X_1,X_2,\ldots,X_s)=\overline{\nabla}_X(\Theta(X_1,X_2,\ldots,X_s))-\sum_{i=1}^s\Theta(X_1,\ldots,\overline{\nabla}_XX_i,\ldots,X_s)$, (1.1)

for any $X_i \in \Gamma(T\overline{M})$, i=1, 2, ..., s. A linear connection $\overline{\nabla}$ on \overline{M} is said to be a Riemannian connection if Riemannian metric g satisfying $Xg(Y, Z) = g(\overline{\nabla}_X Y, Z) + g(Y, \overline{\nabla}_X Z)$, (1.2)

for any X, $Y \in \Gamma(T\overline{M})$. An almost complex structure on \overline{M} is a tensor field J of type (1, 1) on \overline{M} such that at every point $x \in \overline{M}$ we have $J^2 = -I$, where I denotes the identify transformation of $T_x\overline{M}$. A manifold \overline{M} endowed with an almost complex structure is called an almost complex manifold. The covariant derivative of J is defined by $(\overline{\nabla}_X J)Y = \overline{\nabla}_X JY - J\overline{\nabla}_X Y$, (1.3)

for any X, $Y \in \Gamma(T\overline{M})$. More, we define the torsion tensor of J or the Nijenhuis tensor of J by

$$[J, J](X, Y) = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY],$$
 (1.4)

for any X, $Y \in \Gamma(T\overline{M})$, where [X, Y] is the Lie bracket of vector fields X and Y, that is, $[X, Y] = \overline{\nabla}_X Y - \overline{\nabla}_Y X$. A Hermitian metric on an almost complex manifold \overline{M} is a Riemannian metric g satisfying g(JX, JY) = g(X, Y), (1.5)

for any X, $Y \in \Gamma(T\overline{M})$. An almost complex manifold endowed with a Hermitian metric is said to be an almost Hermitian manifold. Definition 1.1([3]). An almost Hermitian manifold \overline{M} with Levi-Civita connection $\overline{\nabla}$ is called a quasi Kaehlerian manifold if we have $(\overline{\nabla}_X J)Y + (\overline{\nabla}_{JX} J)JY = 0$, (1.6)

for any X, $Y \in \Gamma(T\overline{M})$. Definition 1.2([1]). An almost Hermitian manifold \overline{M} with Levi-Civita connection $\overline{\nabla}$ is called a Kaehlerian manifold if we have $\overline{\nabla}_X J = 0$, (1.7)

for any $X\in\Gamma(T\overline{M})$. Obviously, a Kaehlerian manifold is a quasi Kaehlerian manifold. Let M be an m-dimensional Riemannian submanifold of an n-dimensional Riemannian manifold \overline{M} . We denote by TM^\perp the normal bundle to M and by g both metric on M and \overline{M} . Also, we denote by $\overline{\nabla}$ the Levi-Civita connection on \overline{M} , denote by ∇ the induced connection on M.

Then, for any
$$X$$
, $Y \in \Gamma(TM)$ we have $\overline{\nabla}_X Y = \nabla_X Y + h(X, Y)$, (1.8)

where $h\colon \Gamma(TM)\times\Gamma(TM)\to\Gamma(TM^\perp)$ is a normal bundle valued symmetric bilinear form on $\Gamma(TM)$. The equation (1.8) is called the Gauss formula and h is called the second fundamental form of M. Now, for any $X\in\Gamma(TM)$ and $V\in\Gamma(TM^\perp)$ we denote by $-A_VX$ and $\nabla_X^\perp V$ the tangent part and normal part of $\overline{\nabla}_X V$ respectively. Then we have $\overline{\nabla}_X V=-A_VX+\nabla_X^\perp V$.

Thus, for any $V \in \Gamma(TM^{\perp})$ we have a linear operator, satisfying

$$g(A_{V}X, Y) = g(X, A_{V}Y) = g(h(X, Y), V).$$
 (1.10)

The equation (1.9) is called the Weingarten formula. An m-dimensional distribution on a manifold \overline{M} is a mapping D defined on \overline{M} , which assignes to each point x of \overline{M} an m-dimensional linear subspace D_x of $T_x\overline{M}$. A vector field X on \overline{M} belongs to D if we have $X_x \in D_x$ for each $x \in \overline{M}$. When this happens we write $X \in \Gamma(D)$. The distribution D is said to be differentiable if for any $x \in \overline{M}$ there exist m differentiable linearly independent vector fields $X_i \in \Gamma(D)$ in a neighborhood of x. From now on, all distributions are supposed to be differentiable of class C^∞ . Definition 1.3([1]). Let \overline{M} be a real n-dimensional almost Hermitian manifold with almost complex structure J and with Hermitian metric g. Let M be a real m-dimensional Riemannian manifold isometrically immersed in \overline{M} . Then M is called a CR-submanifold of \overline{M} if there exist a differentiable distribution D: $x \to D_x \subset T_x M$, on M satisfying the following conditions: (1) D is holomorphic, that is, $J(D_x) = D_x$, for each $x \in M$, (2)the complementary orthogonal distribution D^\perp : $x \to D_x^\perp \subset T_x M$, is anti-invariant, that is, $J(D_x^\perp) \subset T_x M^\perp$, for each $x \in M$. Now let M be an arbitrary Riemannian manifold isometrically immersed in an almost Hermitian manifold \overline{M} . For each vector field X tangent to M, we put $JX = \phi X + \omega X$, (1.11) where ϕX and ωX are respectively the tangent part and the normal part of JX. We denote by P and Q respectively the projection morphisms of TM to D and D^\perp , that is,

$$X = PX + QX \tag{1.12}$$

for any $X \in \Gamma(TM)$. Then we have

$$\phi X = JPX \tag{1.13}$$

and

$$\omega X = JOX \,, \tag{1.14}$$

for any $X \in \Gamma(TM)$. Moreover, we have

$$\phi^2 = -P \tag{1.15}$$

and

$$\phi^3 + \phi = 0. \tag{1.16}$$

Next, for each vector field V normal to M , we put

$$JV = BV + CV (1.17)$$

where BV and CV are respectively the tangent part and the normal part of JV.

We take account of the decomposition $T\overline{M}=D\oplus D^\perp\oplus JD^\perp\oplus V$. Obviously, we have $\phi X\in\Gamma(D),\ \omega X\in\Gamma(JD^\perp),\ BV\in\Gamma(D^\perp)$ and $CV\in\Gamma(V)$, for any $X\in\Gamma(TM)$ and $V\in\Gamma(JD^\perp\oplus V)$. Further, we obtain $B\circ\omega=-Q$.

The covariant derivative of ϕ is defined by

$$(\nabla_{\mathbf{Y}}\phi)Y = \nabla_{\mathbf{Y}}\phi Y - \phi\nabla_{\mathbf{Y}}Y, \qquad (1.18)$$

for any X, $Y \in \Gamma(TM)$. On the other hand, the covariant derivative of ω is defined by

$$(\nabla_X \omega) Y = \nabla_X^{\perp} \omega Y - \omega \nabla_X Y , \qquad (1.19)$$

for any X, $Y \in \Gamma(TM)$. The exterior derivative of ω is given by

$$d\omega(X, Y) = \frac{1}{2} \{ \nabla_X^{\perp} \omega Y - \nabla_Y^{\perp} \omega X - \omega([X, Y]) \}, \qquad (1.20)$$

for any X, $Y \in \Gamma(TM)$.

Remark: The more details of exterior derivative is founed in [2]. The Nijenhuis tensor of ϕ is defined by

$$[\phi, \phi](X, Y) = [\phi X, \phi Y] + \phi^2[X, Y] - \phi[\phi X, Y] - \phi[X, \phi Y],$$
 (1.21)

for any X, $Y \in \Gamma(TM)$, where [X, Y] is the Lie bracket of vector fields X and Y. We define two the tensor

fields
$$S$$
 and S^* respectively by $S(X, Y) = [\phi, \phi](X, Y) - 2Bd\omega(X, Y)$, (1.22)

and
$$S^*(Y, X) = (L_Y \phi)X = [Y, \phi X] - \phi[Y, X],$$
 (1.23)

for any X, $Y \in \Gamma(TM)$. Definition 1.4([1]). The CR-submanifold M is said to be normal if

$$S(X, Y) = 0$$
 (1.24)

for any X, $Y \in \Gamma(TM)$. Definition 1.5. The CR-submanifold M is said to be mixed normal if

$$S(X, Y) = 0$$
, (1.25)

for any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$.

2 Main Results

Lemma 2.1. Let \overline{M} be a quasi Kaehlerian manifold. Then we have

$$(\overline{\nabla}_X J)Y - (\overline{\nabla}_Y J)X = \frac{1}{2}J[J, \ J](X, \ Y), \tag{2.1}$$

for any X, $Y \in \Gamma(T\overline{M})$.

Proof: For any X, $Y \in \Gamma(T\overline{M})$. From (1.4) and (1.3) we acquire

$$[J, \ J](X, \ Y) = (\overline{\nabla}_{JX}J)Y - (\overline{\nabla}_{JY}J)X + J(\overline{\nabla}_{Y}J)X - J(\overline{\nabla}_{X}J)Y. \tag{2.2}$$

Using (2.2), (1.6) and (1.3) we have

$$[J, \ J](X, \ Y) = (\overline{\nabla}_X J)JY - (\overline{\nabla}_Y J)JX + J(\overline{\nabla}_Y J)X - J(\overline{\nabla}_X J)Y$$
$$= 2J((\overline{\nabla}_Y J)X - (\overline{\nabla}_X J)Y). \tag{2.3}$$

(2.3) follows that (2.1) holds.

Q.E.D.

Lemma 2.2. Let \overline{M} be a quasi Kaehlerian manifold. Then we have

$$(\overline{\nabla}_{JX}J)Y - (\overline{\nabla}_{JY}J)X = \frac{1}{2}[J, J](X, Y), \qquad (2.4)$$

for any X, $Y \in \Gamma(T\overline{M})$. Proof: For any X, $Y \in \Gamma(T\overline{M})$. From (1.6) we get

$$(\overline{\nabla}_{JX}J)Y - (\overline{\nabla}_{JY}J)X = -(\overline{\nabla}_{JX}J)J^{2}Y + (\overline{\nabla}_{JY}J)J^{2}X$$
$$= (\overline{\nabla}_{X}J)JY - (\overline{\nabla}_{Y}J)JX. \qquad (2.5)$$

Using (1.3) in (2.5) we obtain

$$(\overline{\nabla}_{JX}J)Y - (\overline{\nabla}_{JY}J)X = -J((\overline{\nabla}_{X}J)Y - (\overline{\nabla}_{Y}J)X). \tag{2.6}$$

(2.4) comes from (2.6).

Q.E.D.

Lemma 2.3. Let \overline{M} be a quasi Kaehlerian manifold. Then we have

$$(\nabla_{X}\phi)Y = A_{\omega Y}X + Bh(X, Y) + \nabla_{\phi X}Y + \phi\nabla_{\phi X}\phi Y$$

$$+ Bh(\phi X, \phi Y) - \phi A_{\omega Y}\phi X + B\nabla_{\phi X}^{\perp}\omega Y, \qquad (2.7)$$

$$(\nabla_{X}\omega)Y = -h(X, \phi Y) + Ch(X, Y) + h(\phi X, Y) + \omega\nabla_{\phi X}\phi Y$$

$$+ Ch(\phi X, \phi Y) - \omega A_{\omega Y}\phi X + C\nabla_{\phi X}^{\perp}\omega Y, \qquad (2.8)$$

for any $X \in \Gamma(D)$, $Y \in \Gamma(TM)$.

Proof: For any $X \in \Gamma(D)$, $Y \in \Gamma(TM)$. Using (1.6) and (1.3), we have

$$(\overline{\nabla}_X JY - J\overline{\nabla}_X Y) + (-\overline{\nabla}_{JX} Y - J\overline{\nabla}_{JX} JY) = 0.$$
 (2.9)

Taking into account (1.11), (2.9) becomes

$$(\overline{\nabla}_X \phi Y + \overline{\nabla}_X \omega Y) - J \overline{\nabla}_X Y - \overline{\nabla}_{\phi X} Y - J (\overline{\nabla}_{\phi X} \phi Y + \overline{\nabla}_{\phi X} \omega Y) = 0.$$
 (2.10)

Taking account of (1.8) and (1.9), (2.10) changes into

$$\nabla_{X}\phi Y + h(X, \phi Y) - A_{\omega Y}X + \nabla_{X}^{\perp}\omega Y - J\nabla_{X}Y - Jh(X, Y) - \nabla_{\phi X}Y - h(\phi X, Y)$$
$$-J\nabla_{\phi X}\phi Y - Jh(\phi X, \phi Y) + JA_{\omega Y}\phi X - J\nabla_{\phi X}^{\perp}\omega Y = 0. \tag{2.11}$$

According to (1.11) and (1.17), (2.11) turns into

$$\nabla_{X}\phi Y + h(X, \phi Y) - A_{\omega Y}X + \nabla_{X}^{\perp}\omega Y - \phi \nabla_{X}Y - \omega \nabla_{X}Y - Bh(X, Y) - Ch(X, Y)$$

$$-\nabla_{\phi X}Y - h(\phi X, Y) - \phi \nabla_{\phi X}\phi Y - \omega \nabla_{\phi X}\phi Y - Bh(\phi X, \phi Y) - Ch(\phi X, \phi Y)$$

$$+\phi A_{\omega Y}\phi X + \omega A_{\omega Y}\phi X - B\nabla_{\phi X}^{\perp}\omega Y - C\nabla_{\phi X}^{\perp}\omega Y = 0.$$
(2.12)

By comparing to the tangent part and the normal part in (2.12), we get

$$\nabla_{X}\phi Y - A_{\omega Y}X - \phi \nabla_{X}Y - Bh(X, Y) - \nabla_{\phi X}Y - \phi \nabla_{\phi X}\phi Y - Bh(\phi X, \phi Y)$$
$$+ \phi A_{\omega Y}\phi X - B\nabla_{\phi X}^{\perp}\omega Y = 0$$
(2.13)

And

$$h(X, \phi Y) + \nabla_X^{\perp} \omega Y - \omega \nabla_X Y - Ch(X, Y) - h(\phi X, Y) - \omega \nabla_{\phi X} \phi Y - Ch(\phi X, \phi Y) + \omega A_{\omega Y} \phi X - C \nabla_{\phi X}^{\perp} \omega Y = 0.$$
(2.14)

By (2.13) and (1.18) we have (2.7). Also, by (2.14) and (1.19) we get (2.8). Q.E.D.

Lemma 2.4([1]). Let M be a CR-submanifold of an almost Hermitian manifold \overline{M} . Then we have $S(X, Y) = (\nabla_{\phi X} \phi) Y - (\nabla_{\phi Y} \phi) X + \phi \{ (\nabla_{Y} \phi) X - (\nabla_{X} \phi) Y \} - B \{ (\nabla_{X} \omega) Y - (\nabla_{Y} \omega) X \} , \ (2.15)$ for any $X, Y \in \Gamma(TM)$.

Lemma 2.5. Let M be a CR-submanifold of a quasi Kaehlerian manifold \overline{M} . Then we have

$$S(X, Y) = A_{\omega Y} \phi X - \phi A_{\omega Y} X - A_{\omega X} \phi Y + \phi A_{\omega X} Y + ((\overline{\nabla}_{\phi X} J) Y - (\nabla_{\phi Y} J) X)^{T}$$
$$-\frac{1}{2} \phi (J[J, J](X, Y))^{T} - \frac{1}{2} B(J[J, J](X, Y))^{\perp}, \qquad (2.16)$$

for any X, $Y \in \Gamma(TM)$.

Proof: For any X, $Y \in \Gamma(TM)$. Taking into account (1.3), (1.11), (1.8), (1.9) and (1.17), we have

$$(\overline{\nabla}_{X}J)Y = \overline{\nabla}_{X}(\phi Y + \omega Y) - J(\nabla_{X}Y + h(X, Y))$$

$$= \nabla_{X}\phi Y + h(X, \phi Y) - A_{\omega Y}X + \nabla_{X}^{\perp}\omega Y$$

$$-\phi\nabla_{X}Y - \omega\nabla_{X}Y - Bh(X, Y) - Ch(X, Y). \tag{2.17}$$

By comparing to the tangent part and the normal part in (2.17), we obtain

$$((\overline{\nabla}_X J)Y)^T = \nabla_Y \phi Y - A_{\omega Y} X - \phi \nabla_Y Y - Bh(X, Y)$$
 (2.18)

and

$$((\overline{\nabla}_X J)Y)^{\perp} = h(X, \phi Y) + \nabla_X^{\perp} \omega Y - \omega \nabla_X Y - Ch(X, Y). \tag{2.19}$$

Combining (1.18) and (2.18), we have

$$(\nabla_X \phi) Y = A_{\omega Y} X + Bh(X, Y) + ((\overline{\nabla}_X J)Y)^T. \tag{2.20}$$

Combining (1.19) and (2.19), we get

$$(\nabla_X \omega) Y = -h(X, \phi Y) + Ch(X, Y) + ((\overline{\nabla}_X J)Y)^{\perp}. \tag{2.21}$$

Taking account of (2.20) and (2.21), (2.15) becomes

$$S(X, Y) = A_{\omega Y} \phi X + ((\overline{\nabla}_{\phi X} J)Y)^{T} - A_{\omega X} \phi Y - ((\overline{\nabla}_{\phi Y} J)X)^{T} + \phi A_{\omega X} Y + \phi ((\overline{\nabla}_{Y} J)X)^{T} - \phi A_{\omega Y} X - \phi ((\overline{\nabla}_{X} J)Y)^{T} - B((\overline{\nabla}_{X} J)Y)^{\perp} + B((\overline{\nabla}_{Y} J)X)^{\perp}.$$

$$(2.22)$$

Combining (2.22) and (2.1), we obtain our conclusion (2.16).

Theorem2.1. Let M be a CR-submanifold of a quasi Kaehlerian manifold \overline{M} . Then M is normal if and only if we have

$$0 = A_{\omega Y} \phi X - \phi A_{\omega Y} X - A_{\omega X} \phi Y + \phi A_{\omega X} Y + ((\overline{\nabla}_{\phi X} J) Y - (\nabla_{\phi Y} J) X)^{T}$$
$$-\frac{1}{2} \phi (J[J, J](X, Y))^{T} - \frac{1}{2} B(J[J, J](X, Y))^{\perp}, \qquad (2.23)$$

for any X, $Y \in \Gamma(TM)$.

Proof: Taking account of Definition 1.4 and Lemma 2.5, our conclusion holds. Q.E.D. Corollary 2.1. Let M be a CR-submanifold of a Kaehlerian manifold \overline{M} . Then M is normal if and only if we have

$$A_{\omega Y}\phi X - \phi A_{\omega Y}X - A_{\omega X}\phi Y + \phi A_{\omega X}Y = 0, \qquad (2.24)$$

for any X, $Y \in \Gamma(TM)$. Proof: Since a Kaehlerian manifold \overline{M} satisfies

$$\overline{\nabla}_X J = 0$$
, $[J, J](X, Y) = 0$,

for any X, $Y \in \Gamma(TM)$, taking account of Theorem2.1, Corollary2.1 holds. Q.E.D.

Corollary2.2(Bejiancu[1]). Let M be a CR-submanifold of a Kaehlerian manifold \overline{M} . Then M is normal if and only if we have $A_{\omega Y}\phi X=\phi A_{\omega Y}X$, (2.25)

for any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$. Theorem2.2. Let M be a CR-submanifold of a quasi Kaehlerian manifold \overline{M} and $[J,\ J](X,\ Y) \in \Gamma(V)$, (2.26)

for any X, $Y \in \Gamma(TM)$. Then M is normal if and only if we have

$$A_{\omega Y}X + \nabla_{\phi X}Y \in \Gamma(D^{\perp}) \tag{2.27}$$

and

$$h(X, Y) \in \Gamma(V), \tag{2.28}$$

for any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$.

Proof: For any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$. By using (2.26) in (2.16) we obtain

$$S(X, Y) = A_{\omega Y} \phi X - \phi A_{\omega Y} X + ((\overline{\nabla}_{\phi X} J)Y)^{T}. \tag{2.29}$$

Taking into about (1.8), (1.9), (1.11) and (1.17), (1.3) becomes

$$(\overline{\nabla}_{\phi X}J)Y = -A_{\omega Y}\phi X + \nabla^{\perp}_{\phi X}\omega Y - \phi \nabla_{\phi X}Y - \omega \nabla_{\phi X}Y - Bh(\phi X, Y) - Ch(\phi X, Y). \tag{2.30}$$

By comparing to the tangent part and the normal part in (2.30), we get

$$((\overline{\nabla}_{\phi X}J)Y)^{T} = -A_{\alpha Y}\phi X - \phi \nabla_{\phi X}Y - Bh(\phi X, Y). \tag{2.31}$$

From (2.29) and (2.31), we obtain

$$S(X, Y) = -\phi A_{\omega Y} X - \phi \nabla_{\phi X} Y - Bh(\phi X, Y). \tag{2.32}$$

Suppose M is normal CR-submanifold of \overline{M} . For any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$, then from (2.32) and Definition 1.4 we have $\phi(A_{\omega Y}X + \nabla_{\phi X}Y) = 0$ (2.33)

And
$$Bh(\phi X, Y) = 0$$
. (2.34)

From (2.33) we obtain (2.27), correspondingly, from (2.34) we get (2.28). Conversely, if (2.27) and (2.28) are sastified. Now, we shall prove S=0 by means of the decomposition $TM=D\oplus D^{\perp}$. First, for any $X\in \Gamma(D)$, $Y\in \Gamma(D^{\perp})$, from (2.27) we obtain (2.33), correspondingly, from (2.28) we get (2.34). Taking account of (2.33) and (2.34), (2.32) becomes S(X,Y)=0, $\forall X\in \Gamma(D)$, $Y\in \Gamma(D^{\perp})$. Next, for any $X,Y\in \Gamma(D)$, by using (2.26), (2.16) changes into $S(X,Y)=((\overline{\nabla}_{\phi X}J)Y)^T-((\overline{\nabla}_{\phi Y}J)X)^T$

$$= ((\overline{\nabla}_{JX}J)Y - (\overline{\nabla}_{JY}J)X)^{T}. \tag{2.35}$$

From (2.4) and (2.26), (2.35) becomes S(X, Y) = 0, $\forall X, Y \in \Gamma(D)$. Finally, for any $X, Y \in \Gamma(D^{\perp})$, in accordance with (2.26), (2.16) changes over $S(X, Y) = -\phi A_{\omega Y} X + \phi A_{\omega X} Y \in \Gamma(D)$. (2.36)

 $\forall Z \in \Gamma(D)$, on the basis of (2.36), (1.11) and (1.10), we have

$$g(S(X, Y), Z) = g(-\phi A_{\omega Y} X, Z) + g(\phi A_{\omega X} Y, Z)$$

$$= g(h(X, \phi Z), \omega Y) - g(h(Y, \phi Z), \omega Y). \tag{2.37}$$

Using (2.28) in (2.37), we get

$$g(S(X, Y), Z) = 0.$$
 (2.38)

That is, $S(X, Y) = 0, \forall X, Y \in \Gamma(D)$.

From the above three conclusions we know S(X, Y) = 0, for any $X, Y \in \Gamma(TM)$. Thus, the CR-submanifold M is normal. Q.E.D. Theorem2.3. Let M be a CR-submanifold of a quasi Kaehlerian manifold \overline{M} with following conditions satisfing $\nabla_X Y \in \Gamma(D)$ (2.39)

And
$$h(X, Y) \in \Gamma(V)$$
, (2.40)

for any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$. Then M is mixed normal if and only if we have

$$S^*(Y, X) = 0$$
, (2.41)

for any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$.

Proof: For any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$. According to (1.18), (2.15) becomes

$$S(X, Y) = \phi(\phi[X, Y] - [\phi X, Y]) - B(\nabla_{Y}\omega)Y + B(\nabla_{Y}\omega)X. \tag{2.42}$$

Taking into account (1.19), (2.8) and $B \circ C = 0$, (2.42) changes into

$$S(X, Y) = \phi(\phi[X, Y] - [\phi X, Y]) - Bh(\phi X, Y) + B\omega A_{\omega Y}\phi X - B\omega \nabla_{Y}X$$
. (2.43)

Taking account of (1.23), (2.40) and $B \circ \omega = -Q$, (2.43) changes over

$$S(X, Y) = \phi S^*(Y, X) - QA_{\omega Y}\phi X + Q\nabla_Y X$$
. (2.44)

 $\forall U \in \Gamma(D^{\perp})$, combining (1.12), (1.10) and (2.40), we have

$$g(QA_{\omega Y}\phi X, U) = g(A_{\omega Y}\phi X, U) = g(h(\phi X, U), \omega Y) = 0.$$
(2.45)

(2.45) leads to
$$QA_{\omega Y}\phi X=0$$
, $\forall X\in\Gamma(D)$, $Y\in\Gamma(D^{\perp})$. (2.46)

Combining (2.44) and (2.46), we get
$$S(X, Y) = \phi S^*(Y, X) + Q\nabla_Y X, \forall X \in \Gamma(D), Y \in \Gamma(D^{\perp}).$$
 (2.47)

Suppose M is mixed normal CR-submanifold of \overline{M} . For any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$, then from (2.47) it follows

$$\phi S^*(Y, X) = 0 {(2.48)}$$

and

$$Q\nabla_{Y}X = 0. (2.49)$$

Based on (2.48) we obtain

$$S^*(Y, X) \in \Gamma(D^{\perp}), \tag{2.50}$$

for any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$. On the other hand, taking into account (2.39) and (2.49), (1.23) becomes

$$S^*(Y, X) = \nabla_Y \phi X - \nabla_{\phi X} Y - \phi[Y, X] \in \Gamma(D), \qquad (2.51)$$

for any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$. Taking account of (2.50) and (2.51), we get that (2.41) holds.

Conversely, if (2.41) is sastified. For any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$, combining (1.15) and (1.12), (1.23) changes into

$$S^{*}(Y, -\phi X) = [Y, X] - \phi[Y, -\phi X] = P[Y, X] - \phi[Y, -\phi X] + Q[Y, X]. \tag{2.52}$$

By using (2.41) in (2.52), we have
$$Q[Y, X] = 0, \forall X \in \Gamma(D), Y \in \Gamma(D^{\perp})$$
. (2.53)

From (2.53) and (2.39), we obtain
$$Q\nabla_v X = 0$$
, $\forall X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$. (2.54)

Combining (2.41) and (2.54), (2.47) becomes
$$S(X, Y) = 0, \forall X \in \Gamma(D), Y \in \Gamma(D^{\perp})$$
. (2.55)

Relying on Definition 1.5, M is mixed normal.

Q.E.D.

References

Aurel Bejancu, Geometry of CR-submanifolds, Reide Publishing Company, USA(1985), pp. 1-62

Kentaro Yano and Masahiro Kon, Structures on manifolds, World Scientific Publishing Company, Singpore(1984), pp. 16-17

Hani Farran, On quasi Kaehlerian manifold, Tensor, Vol. 40(1983), pp. 45-48

Shlomo Sternberg, Lectures on Symplectic Geometry, International Publishing Company,

CHN(2012), pp. 127-136

Wan Yong and Donghe Pei, Integrability of distribution D^{\perp} on a nearly Sasakian manifold, Acta Mathematica Academiae Paedagogicae, Vol. 25(2009), pp. 271-276.

Wan Yong and Gao Qiju, Integrability of distribution on a CR-submanifold of a quasi Kaehlerian manifold, Journal of Changsha Univ. of Electric Power(NS), Vol. 13(1998), pp. 7-15.

Chen.B.Y, CR-submanifolds of a Kaehlerian manifold, Differential Geometry, Vol. 16 (1981), pp. 305-323.

Chen B.Y, Totally umbilical submanifolds of Kaehler manifolds, Archiv der Mathematik, Vol. 16(1981), pp. 83-91.