Normal CR-Submanifolds of a Quasi Kaehlerian Manifold

Yong Wan¹ & Weizhi Chen²

Abstract:

In this paper, we establish a mathematical identity, which makes it possible to use the Gauss formula and Weingarten formula in the anti invariant distribution. Then we give some sufficient and necessary conditions for normal CR-submanifold of a quasi Kaehlerian manifold by both tensor S and S^* of type $(1, 2)$.

Keywords: quasi Kaehlerian manifold, CR-submanifold, normal, connection

1 Introduction

In this paper, all manifolds and morphisms are supposed to be differentiable of class C^∞. Let \overline{M} be a real n-dimensional connected differentiable manifold. $T(\overline{M})$ and $F(\overline{M})$ are respectively the tangle bundle to \overline{M} and the algebra of differentiable functions on \overline{M}. Also, we denote by $\Gamma(H)$ the module of differentiable sections of a vector bundle H.

A linear connection on \overline{M} is a mapping

$$\overline{\nabla}: \Gamma(T\overline{M}) \times \Gamma(T\overline{M}) \rightarrow \Gamma(T\overline{M}); \ (X, \ Y) \rightarrow \overline{\nabla}_X Y$$

satisfying the following conditions

$$(1) \ \overline{\nabla}_{f(X)+Y}(Z) = f \overline{\nabla}_X Z + \overline{\nabla}_Y Z,$$

¹ School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Hunan, P. R. China. E-mail: wanyong870901@foxmail.com.
² School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Hunan, P. R. China. E-mail: kalkuy@163.com.
\[(2) \quad \nabla_x (fY + Z) = f\nabla_x Y + (Xf)Y + \nabla_x Z, \quad \text{for any } f \in F(\overline{M}) \text{ and } X, \ Y, \ Z \in \Gamma(T\overline{M}). \]

The operator \(\nabla_x \) is called the covariant differentiation with respect to \(X \). Thus for any tensor field \(\Theta \) of type \((0, s)\) or \((1, s)\) we define the covariant differentiation \(\nabla_x \Theta \) of \(\Theta \) with respect to \(X \) by

\[(\nabla_x \Theta)(X_1, X_2, \ldots, X_s) = \nabla_x (\Theta(X_1, X_2, \ldots, X_s)) - \sum_{i=1}^s \Theta(X_i, \nabla_x X_i, \ldots, X_s), \quad (1.1) \]

for any \(X_i \in \Gamma(T\overline{M}), i = 1, 2, \ldots, s \). A linear connection \(\nabla \) on \(\overline{M} \) is said to be a Riemannian connection if a Riemannian metric \(g \) satisfying

\[Xg(Y, Z) = g(\nabla_x Y, Z) + g(Y, \nabla_x Z), \quad (1.2) \]

for any \(X, \ Y \in \Gamma(T\overline{M}) \). An almost complex structure on \(\overline{M} \) is a tensor field \(J \) of type \((1, 1)\) on \(\overline{M} \) such that at every point \(x \in \overline{M} \) we have \(J^2 = -I \), where \(I \) denotes the identity transformation of \(T_x\overline{M} \). A manifold \(\overline{M} \) endowed with an almost complex structure is called an almost complex manifold. The covariant derivative of \(J \) is defined by

\[(\nabla_x J)Y = \nabla_x JY - J\nabla_x Y, \quad (1.3) \]

for any \(X, \ Y \in \Gamma(T\overline{M}) \). More, we define the torsion tensor of \(J \) or the Nijenhuis tensor of \(J \) by

\[[J, J](X, Y) = [JX, JY] - [X, JY] - [JX, Y] - J[X, JY], \quad (1.4) \]

for any \(X, Y \in \Gamma(T\overline{M}) \), where \([X, Y]\) is the Lie bracket of vector fields \(X \) and \(Y \), that is,

\[[X, Y] = \nabla_x Y - \nabla_y X. \]

A Hermitian metric on an almost complex manifold \(\overline{M} \) is a Riemannian metric \(g \) satisfying

\[g(JX, JY) = g(X, Y), \quad (1.5) \]

for any \(X, Y \in \Gamma(T\overline{M}) \). An almost complex manifold endowed with a Hermitian metric is said to be an almost Hermitian manifold. Definition 1.1([3]). An almost Hermitian manifold \(\overline{M} \) with Levi-Civita connection \(\nabla \) is called a quasi Kählerian manifold if we have \((\nabla_x J)Y + (\nabla_x J)JY = 0 \),

\[(1.6) \]

for any \(X, Y \in \Gamma(T\overline{M}) \). Definition 1.2([1]). An almost Hermitian manifold \(\overline{M} \) with Levi-Civita connection \(\nabla \) is called a Kählerian manifold if we have \(\nabla_x J = 0 \),

\[(1.7) \]

for any \(X \in \Gamma(T\overline{M}) \). Obviously, a Kählerian manifold is a quasi Kählerian manifold. Let \(M \) be an \(m \)-dimensional Riemannian submanifold of an \(n \)-dimensional Riemannian manifold \(\overline{M} \). We denote by \(TM^\perp \) the normal bundle to \(M \) and by \(g \) both metric on \(M \) and \(\overline{M} \). Also, we denote by \(\nabla \) the Levi-Civita connection on \(\overline{M} \), denote by \(\nabla \) the induced connection on \(M \), and denote by \(\nabla^\perp \) the induced normal connection on \(M \).

Then, for any \(X, Y \in \Gamma(TM) \) we have

\[\nabla_x Y = \nabla_x Y + h(X, Y), \quad (1.8) \]
where $h : \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM^\perp)$ is a normal bundle valued symmetric bilinear form on $\Gamma(TM)$. The equation (1.8) is called the Gauss formula and h is called the second fundamental form of M. Now, for any $X \in \Gamma(TM)$ and $V \in \Gamma(TM^\perp)$ we denote by $-A_v X$ and $\nabla^\perp_x V$ the tangent part and normal part of $\nabla_x V$ respectively. Then we have $\nabla_x V = -A_v X + \nabla^\perp_x V$. (1.9)

Thus, for any $V \in \Gamma(TM^\perp)$ we have a linear operator, satisfying

$$g(A_v X, Y) = g(X, A_v Y) = g(h(X, Y), V).$$

The equation (1.9) is called the Weingarten formula. An m-dimensional distribution on a manifold \overline{M} is a mapping D defined on \overline{M}, which assigns to each point x of \overline{M} an m-dimensional linear subspace D_x of $T_x \overline{M}$. A vector field X on \overline{M} belongs to D if we have $X_x \in D_x$ for each $x \in \overline{M}$. When this happens we write $X \in \Gamma(D)$. The distribution D is said to be differentiable if for any $x \in \overline{M}$ there exist m differentiable linearly independent vector fields $X_i \in \Gamma(D)$ in a neighborhood of x. From now on, all distributions are supposed to be differentiable of class C^∞. Definition 1.3([1]). Let \overline{M} be a real n-dimensional almost Hermitian manifold with almost complex structure J and with Hermitian metric g. Let M be a real m-dimensional Riemannian manifold isometrically immersed in \overline{M}. Then M is called a CR-submanifold of \overline{M} if there exist a differentiable distribution $D : x \to D_x \subset T_x M$, on M satisfying the following conditions: (1) D is holomorphic, that is, $J(D_x) = D_x$, for each $x \in M$,

(2) the complementary orthogonal distribution $D^\perp : x \to D^\perp_x \subset T_x M$, is anti-invariant, that is, $J(D^\perp_x) \subset T_x M^\perp$, for each $x \in M$. Now let M be an arbitrary Riemannian manifold isometrically immersed in an almost Hermitian manifold \overline{M}. For each vector field X tangent to M, we put $JX = \phi X + \omega X$, (1.11)

where ϕX and ωX are respectively the tangent part and the normal part of JX. We denote by P and Q respectively the projection morphisms of TM to D and D^\perp, that is,

$$X = PX + QX,$$

(1.12)

for any $X \in \Gamma(TM)$. Then we have

$$\phi X = JPX$$

(1.13)

and

$$\omega X = JQX,$$

(1.14)

for any $X \in \Gamma(TM)$. Moreover, we have

$$\phi^2 = -P$$

(1.15)

and
\[\phi^3 + \phi = 0. \quad (1.16) \]

Next, for each vector field \(V \) normal to \(M \), we put
\[JV = BV + CV, \quad (1.17) \]
where \(BV \) and \(CV \) are respectively the tangent part and the normal part of \(JV \).

We take account of the decomposition \(T\overline{M} = D \oplus D^\perp \oplus JD^\perp \oplus \nu \). Obviously, we have \(\phi X \in \Gamma(D), \ \omega X \in \Gamma(JD^\perp), \ BV \in \Gamma(D^\perp) \) and \(CV \in \Gamma(\nu) \), for any \(X \in \Gamma(TM) \) and \(V \in \Gamma(JD^\perp \oplus \nu) \). Further, we obtain \(B \circ \omega = -Q \).

The covariant derivative of \(\phi \) is defined by
\[(\nabla_X \phi)Y = \nabla_X \phi Y - \phi \nabla_X Y, \quad (1.18) \]
for any \(X, \ Y \in \Gamma(TM) \). On the other hand, the covariant derivative of \(\omega \) is defined by
\[(\nabla_X \omega)Y = \nabla^\perp_X \omega Y - \omega \nabla_X Y, \quad (1.19) \]
for any \(X, \ Y \in \Gamma(TM) \). The exterior derivative of \(\omega \) is given by
\[d\omega(X, \ Y) = \frac{1}{2} \{ \nabla^\perp_X \omega Y - \nabla^\perp_Y \omega X - \omega([X, \ Y]) \}, \quad (1.20) \]
for any \(X, \ Y \in \Gamma(TM) \).

Remark: The more details of exterior derivative is found in [2]. The Nijenhuis tensor of \(\phi \) is defined by
\[[\phi, \ \phi](X, \ Y) = [\phi X, \ \phi Y] + \phi^2[X, \ Y] - \phi[\phi X, \ Y] - \phi[X, \ \phi Y], \quad (1.21) \]
for any \(X, \ Y \in \Gamma(TM) \), where \([X, \ Y]\) is the Lie bracket of vector fields \(X \) and \(Y \). We define two the tensor fields \(S \) and \(S^* \) respectively by
\[S(X, \ Y) = [\phi, \ \phi](X, \ Y) - 2Bd\omega(X, \ Y), \quad (1.22) \]
and
\[S^*(Y, \ X) = (L_\phi)X = [Y, \ \phi X] - \phi[Y, \ X], \quad (1.23) \]
for any \(X, \ Y \in \Gamma(TM) \). Definition 1.4([1]). The CR-submanifold \(M \) is said to be normal if
\[S(X, \ Y) = 0, \quad (1.24) \]
for any \(X, \ Y \in \Gamma(TM) \). Definition 1.5. The CR-submanifold \(M \) is said to be mixed normal if
\[S(X, \ Y) = 0, \quad (1.25) \]
for any \(X \in \Gamma(D), \ Y \in \Gamma(D^\perp) \).

2 Main Results

Lemma 2.1. Let \(\overline{M} \) be a quasi Kaehlerian manifold. Then we have
\[(\nabla_X J)Y - (\nabla_Y J)X = \frac{1}{2} J[J, J](X, Y), \quad (2.1)\]

for any \(X, Y \in \Gamma(TM)\).

Proof: For any \(X, Y \in \Gamma(TM)\). From (1.4) and (1.3) we acquire
\[[J, J](X, Y) = (\nabla_X J)Y - (\nabla_Y J)X + J(\nabla_Y J)X - J(\nabla_X J)Y. \quad (2.2) \]

Using (2.2), (1.6) and (1.3) we have
\[[J, J](X, Y) = (\nabla_X J)JY - (\nabla_Y J)JX + J(\nabla_Y J)X - J(\nabla_X J)Y \]
\[= 2J((\nabla_Y J)X - (\nabla_X J)Y). \quad (2.3) \]

(2.3) follows that (2.1) holds. \(Q.E.D.\)

Lemma 2.2. Let \(M\) be a quasi Kaehlerian manifold. Then we have
\[(\nabla_X J)Y - (\nabla_Y J)X = \frac{1}{2} [J, J](X, Y), \quad (2.4) \]

for any \(X, Y \in \Gamma(TM)\). Proof: For any \(X, Y \in \Gamma(TM)\). From (1.6) we get
\[(\nabla_X J)Y - (\nabla_Y J)X = -(\nabla_X J)J^2Y + (\nabla_Y J)J^2X \]
\[= (\nabla_X J)JY - (\nabla_Y J)JX. \quad (2.5) \]

Using (1.3) in (2.5) we obtain
\[(\nabla_X J)Y - (\nabla_Y J)X = -J((\nabla_X J)Y - (\nabla_Y J)X). \quad (2.6) \]

(2.4) comes from (2.6). \(Q.E.D.\)

Lemma 2.3. Let \(M\) be a quasi Kaehlerian manifold. Then we have
\[(\nabla_X \phi)Y = A_{\phi X}X + Bh(X, Y) + \nabla_{\phi X}Y + \phi \nabla_{\phi X}Y \]
\[+ Bh(\phi X, \phi Y) - \phi A_{\phi X} \phi X + B\nabla_{\phi X} \phi Y, \quad (2.7) \]

\[(\nabla_X \omega)Y = -h(X, \phi Y) + Ch(X, Y) + h(\phi X, Y) + \omega \nabla_{\phi X} \phi Y \]
\[+ Ch(\phi X, \phi Y) - \omega A_{\phi X} \phi X + C\nabla_{\phi X} \phi Y, \quad (2.8) \]

for any \(X \in \Gamma(D), Y \in \Gamma(TM)\).

Proof: For any \(X \in \Gamma(D), Y \in \Gamma(TM)\). Using (1.6) and (1.3), we have
\[(\nabla_X JY - J\nabla_X Y) + (\nabla_{\phi X} Y - J\nabla_{\phi X} JY) = 0. \quad (2.9) \]

Taking into account (1.11), (2.9) becomes
\[(\nabla_X \phi Y + \nabla_X \omega Y) - J\nabla_X Y - \nabla_{\phi X} Y - J(\nabla_{\phi X} \phi Y + \nabla_{\phi X} \omega Y) = 0. \quad (2.10) \]

Taking account of (1.8) and (1.9), (2.10) changes into
\[\nabla_x \phi Y + h(X, \phi Y) - A_{aoY} X + \nabla_x^+ \omega Y - J \nabla_x Y - J h(X, Y) - \nabla_{\phi \omega} Y - h(\phi X, Y) \]
\[- J \nabla_{\phi \omega} Y - h(\phi X, Y) + J A_{aoY} \phi X - J \nabla_{\phi \omega} \omega Y = 0. \]
(2.11)

According to (1.11) and (1.17), (2.11) turns into
\[\nabla_x \phi Y + h(X, \phi Y) - A_{aoY} X + \nabla_x^+ \omega Y - \phi \nabla_x Y - \omega \nabla_x Y - B h(X, Y) - Ch(X, Y) \]
\[- \nabla_{\phi \omega} Y - h(\phi X, Y) - \phi \nabla_{\phi \omega} \phi Y - \omega \nabla_{\phi \omega} \phi Y - B h(\phi X, \phi Y) - Ch(\phi X, \phi Y) \]
\[+ \phi A_{aoY} \phi X + \omega A_{aoY} \phi X - B \nabla_{\phi \omega}^+ \omega Y - C \nabla_{\phi \omega}^+ \omega Y = 0. \]
(2.12)

By comparing to the tangent part and the normal part in (2.12), we get
\[\nabla_x \phi Y - A_{aoY} X - \phi \nabla_x Y - B h(X, Y) - \nabla_{\phi \omega} Y - \phi \nabla_{\phi \omega} \phi Y - B h(\phi X, \phi Y) \]
\[+ \phi A_{aoY} \phi X - B \nabla_{\phi \omega}^+ \omega Y = 0 \]
(2.13)

And
\[h(X, \phi Y) + \nabla_x^+ \omega Y - \omega \nabla_x Y - Ch(X, Y) - h(\phi X, Y) - \omega \nabla_{\phi \omega} \phi Y - Ch(\phi X, \phi Y) \]
\[+ \omega A_{aoY} \phi X - C \nabla_{\phi \omega}^+ \omega Y = 0. \]
(2.14)

By (2.13) and (1.18) we have (2.7). Also, by (2.14) and (1.19) we get (2.8). Q.E.D.

Lemma 2.4([1]). Let \(M \) be a CR-submanifold of an almost Hermitian manifold \(\overline{M} \). Then we have
\[S(X, Y) = (\nabla_{\phi \omega} \phi) Y - (\nabla_{\phi \omega} \phi) X + \phi \{ (\nabla_{\phi \omega} \phi) X - (\nabla_{\phi \omega} \phi) Y \} - B \{ (\nabla_{\phi \omega} \phi) Y - (\nabla_{\phi \omega} \phi) X \}, \]
(2.15)

for any \(X, Y \in \Gamma(TM) \).

Lemma 2.5. Let \(M \) be a CR-submanifold of a quasi Kählerian manifold \(\overline{M} \). Then we have
\[S(X, Y) = A_{aoY} \phi X - \phi A_{aoY} X - A_{aoX} \phi Y + \phi A_{aoX} Y + (\nabla_{\phi \omega} J) Y - (\nabla_{\phi \omega} J) X \]
\[= -\frac{1}{2} \phi (J [J, J] (X, Y))^{\top} - \frac{1}{2} B(J [J, J] (X, Y))^{\top}, \]
(2.16)

for any \(X, Y \in \Gamma(TM) \).

Proof: For any \(X, Y \in \Gamma(TM) \). Taking into account (1.3), (1.11), (1.8), (1.9) and (1.17), we have
\[(\nabla_{\phi \omega} J) Y = \nabla_{\phi \omega} \phi Y + \omega Y - J (\nabla_{\phi \omega} Y + h(X, Y)) \]
\[= \nabla_{\phi \omega} \phi Y + h(X, \phi Y) - A_{aoY} X + \nabla_{\phi \omega} \omega Y \]
\[- \phi \nabla_{\omega Y} Y - \omega \nabla_{\phi \omega} Y - B h(X, Y) - Ch(X, Y). \]
(2.17)

By comparing to the tangent part and the normal part in (2.17), we obtain
\[((\nabla_{\phi \omega} J) Y) = \nabla_{\phi \omega} \phi Y - A_{aoY} X - \phi \nabla_{\phi \omega} Y - B h(X, Y) \]
(2.18)

and
\[(\overline{\nabla}_X J)Y^\perp = h(X, \phi Y) + \nabla^\perp_X \omega Y - \omega \overline{\nabla}_X Y - Ch(X, Y). \quad (2.19)\]

Combining (1.18) and (2.18), we have
\[(\nabla_X \phi)Y = A_{\omega \phi} X + Bh(X, Y) + (\overline{\nabla}_X J)Y^T. \quad (2.20)\]

Combining (1.19) and (2.19), we get
\[(\nabla_X \omega)Y = -h(X, \phi Y) + Ch(X, Y) + (\overline{\nabla}_X J)Y^\perp. \quad (2.21)\]

Taking account of (2.20) and (2.21), (2.15) becomes
\[S(X, Y) = A_{\omega \phi} \phi X + ((\overline{\nabla}_x J)Y)^T - A_{\omega \alpha} \phi Y - ((\overline{\nabla}_{\phi \gamma} J)X)^T + \phi A_{\omega \alpha} Y + \phi ((\overline{\nabla}_Y J)X)^T - \phi A_{\omega \alpha} X - \phi ((\overline{\nabla}_X J)Y)^T - B((\overline{\nabla}_X J)Y)^\perp + B((\overline{\nabla}_Y J)X)^\perp. \quad (2.22)\]

Combining (2.22) and (2.1), we obtain our conclusion (2.16).

Theorem 2.2. Let \(M\) be a CR-submanifold of a quasi Kaehlerian manifold \(\overline{M}\). Then \(M\) is normal if and only if we have
\[0 = A_{\omega \phi} \phi X - \phi A_{\omega \phi} X - A_{\omega \alpha} \phi Y + \phi A_{\omega \alpha} Y + ((\overline{\nabla}_x J)Y - (\overline{\nabla}_{\phi \gamma} J)X)^T - \frac{1}{2} \phi (J[J, J](X, Y))^T - \frac{1}{2} B(J[J, J](X, Y))^\perp, \quad (2.23)\]

for any \(X, Y \in \Gamma(TM)\).

Proof: Taking account of Definition 1.4 and Lemma 2.5, our conclusion holds. \(\text{Q.E.D.}\)

Corollary 2.1. Let \(M\) be a CR-submanifold of a Kaehlerian manifold \(\overline{M}\). Then \(M\) is normal if and only if we have
\[A_{\omega \phi} \phi X - \phi A_{\omega \phi} X - A_{\omega \alpha} \phi Y + \phi A_{\omega \alpha} Y = 0, \quad (2.24)\]

for any \(X, Y \in \Gamma(TM)\).

Proof: Since a Kaehlerian manifold \(\overline{M}\) satisfies
\[\overline{\nabla}_X J = 0, \quad [J, J](X, Y) = 0, \]
for any \(X, Y \in \Gamma(TM)\), taking account of Theorem 2.1, Corollary 2.1 holds. \(\text{Q.E.D.}\)

Corollary 2.2 (Bejancu[1]). Let \(M\) be a CR-submanifold of a Kaehlerian manifold \(\overline{M}\). Then \(M\) is normal if and only if we have
\[A_{\omega \phi} \phi X = \phi A_{\omega \phi} X, \quad (2.25)\]

for any \(X \in \Gamma(D), Y \in \Gamma(D^\perp)\). Theorem 2.2. Let \(M\) be a CR-submanifold of a quasi Kaehlerian manifold \(\overline{M}\) and
\[A_{\omega \alpha} X + \overline{\nabla}_{\phi \alpha} Y \in \Gamma(D^\perp), \quad (2.27)\]

for any \(X, Y \in \Gamma(TM)\). Then \(M\) is normal if and only if we have
\[h(X, Y) \in \Gamma(v), \quad (2.28)\]
for any $X \in \Gamma(D), \; Y \in \Gamma(D^\perp)$.

Proof: For any $X \in \Gamma(D), \; Y \in \Gamma(D^\perp)$. By using (2.26) in (2.16) we obtain

$$S(X, \; Y) = A_{aoY} \phi X - \phi A_{oY} X + ((\overline{\nabla}_{\phi Y} J)Y)^T. \quad (2.29)$$

Taking into account (1.8), (1.9), (1.11) and (1.17), (1.3) becomes

$$(\overline{\nabla}_{\phi Y} J)Y = -A_{aoY} \phi X + \nabla_{\phi Y} Y - \phi \nabla_{\phi Y} Y - \omega \overline{\nabla}_{\phi Y} Y - Bh(\phi X, \; Y) - Ch(\phi X, \; Y). \quad (2.30)$$

By comparing to the tangent part and the normal part in (2.30), we get

$$((\overline{\nabla}_{\phi Y} J)Y)^T = -A_{aoY} \phi X - \phi \nabla_{\phi Y} Y - Bh(\phi X, \; Y). \quad (2.31)$$

From (2.29) and (2.31), we obtain

$$S(X, \; Y) = -A_{aoY} \phi X - \phi \nabla_{\phi Y} Y - Bh(\phi X, \; Y). \quad (2.32)$$

Suppose M is normal CR-submanifold of \overline{M}. For any $X \in \Gamma(D), \; Y \in \Gamma(D^\perp)$, then from (2.32) and Definition 1.4 we have $\phi(A_{aoY} X + \nabla_{\phi Y} Y) = 0$ \hspace{1cm} (2.33)

And $Bh(\phi X, \; Y) = 0$. \hspace{1cm} (2.34)

From (2.33) we obtain (2.27), correspondingly, from (2.34) we get (2.28). Conversely, if (2.27) and (2.28) are satisfied.

Now, we shall prove $S = 0$ by means of the decomposition $TM = D \oplus D^\perp$. First, for any $X \in \Gamma(D), \; Y \in \Gamma(D^\perp)$, from (2.27) we obtain (2.33), correspondingly, from (2.28) we get (2.34). Taking account of (2.33) and (2.34), (2.32) becomes $S(X, \; Y) = 0, \; \forall X \in \Gamma(D), \; Y \in \Gamma(D^\perp)$. Next, for any $X, \; Y \in \Gamma(D)$, by using (2.26), (2.16) changes into $S(X, \; Y) = ((\overline{\nabla}_{\phi Y} J)Y)^T - ((\overline{\nabla}_{\phi Y} J)X)^T$

$$= ((\overline{\nabla}_{JX} Y - (\overline{\nabla}_{JY} J)X)^T. \quad (2.35)$$

From (2.4) and (2.26), (2.35) becomes $S(X, \; Y) = 0, \; \forall X, \; Y \in \Gamma(D)$. Finally, for any $X, \; Y \in \Gamma(D^\perp)$, in accordance with (2.26), (2.16) changes over $S(X, \; Y) = -A_{aoY} X + \phi A_{oY} Y \in \Gamma(D)$.

$$\forall Z \in \Gamma(D), \; \text{on the basis of (2.36), (1.11) and (1.10), we have}$$

$$g(S(X, \; Y), \; Z) = g(-\phi A_{oY} X, \; Z) + g(\phi A_{oY} Y, \; Z)$$

$$= g(h(X, \; \phi Z), \; \omega Y) - g(h(Y, \; \phi Z), \; \omega Y). \quad (2.37)$$

Using (2.28) in (2.37), we get

$$g(S(X, \; Y), \; Z) = 0. \quad (2.38)$$

That is, $S(X, \; Y) = 0, \; \forall X, \; Y \in \Gamma(D)$.

From the above three conclusions we know $S(X, Y) = 0$, for any $X, Y \in \Gamma(TM)$. Thus, the CR-submanifold M is normal. Q.E.D. Theorem 2.3. Let M be a CR-submanifold of a quasi Kaehlerian manifold \overline{M} with following conditions satisfying $\nabla_X Y \in \Gamma(D)$ for any $X \in \Gamma(D)$, $Y \in \Gamma(D^\perp)$. Then M is mixed normal if and only if we have
$$S^*(Y, X) = 0,$$ (2.41)
for any $X \in \Gamma(D), \ Y \in \Gamma(D^\perp)$.

Proof: For any $X \in \Gamma(D), \ Y \in \Gamma(D^\perp)$. According to (1.18), (2.15) becomes
$$S(X, Y) = \phi(\phi[X, Y] - [\phi X, Y]) - B(\nabla_X \omega)Y + B(\nabla_Y \omega)X. \quad (2.42)$$

Taking into account (1.19), (2.8) and $B \circ C = 0$, (2.42) changes into
$$S(X, Y) = \phi(\phi[X, Y] - [\phi X, Y]) - Bh(\phi X, Y) + B\alpha\alpha_{\phi} \phi X - B\alpha V, X. \quad (2.43)$$

Taking account of (1.23), (2.40) and $B \circ \omega = -Q$, (2.43) changes over
$$S(X, Y) = \phi S^*(Y, X) - QA_{\omega} \phi X + QV, Y X. \quad (2.44)$$
\[\forall U \in \Gamma(D^\perp), \text{ combining (1.12), (1.10) and (2.40), we have} \]
$$g(QA_{\omega} \phi X, U) = g(A_{\omega} \phi X, U) = g(h(\phi X, U), \omega Y) = 0. \quad (2.45)$$

(2.45) leads to $QA_{\omega} \phi X = 0, \ \forall X \in \Gamma(D), \ Y \in \Gamma(D^\perp). \quad (2.46)$

Combining (2.44) and (2.46), we get $S(X, Y) = \phi S^*(Y, X) + QV, Y X, \ \forall X \in \Gamma(D), \ Y \in \Gamma(D^\perp). \quad (2.47)$

Suppose M is mixed normal CR-submanifold of \overline{M}. For any $X \in \Gamma(D), \ Y \in \Gamma(D^\perp)$, then from (2.47) it follows
$$\phi S^*(Y, X) = 0 \quad (2.48)$$

and
$$QV, Y X = 0. \quad (2.49)$$

Based on (2.48) we obtain
$$S^*(Y, X) \in \Gamma(D^\perp), \quad (2.50)$$
for any $X \in \Gamma(D), \ Y \in \Gamma(D^\perp)$. On the other hand, taking into account (2.39) and (2.49), (1.23) becomes
$$S^*(Y, X) = \nabla_Y \phi X - \nabla_{gX} Y - \phi[Y, X] \in \Gamma(D), \quad (2.51)$$
for any $X \in \Gamma(D), \ Y \in \Gamma(D^\perp)$. Taking account of (2.50) and (2.51), we get that (2.41) holds.

Conversely, if (2.41) is satisfied. For any $X \in \Gamma(D), \ Y \in \Gamma(D^\perp)$, combining (1.15) and (1.12), (1.23) changes into
\[S^\top(Y, -\phi X) = [Y, X] - \phi[Y, X] = P[Y, X] - \phi[Y, X] + Q[Y, X]. \] (2.52)

By using (2.41) in (2.52), we have \[Q[Y, X] = 0, \quad \forall X \in \Gamma(D), \quad Y \in \Gamma(D^\perp). \] (2.53)

From (2.53) and (2.39), we obtain \[Q \nabla_Y X = 0, \quad \forall X \in \Gamma(D), \quad Y \in \Gamma(D^\perp). \] (2.54)

Combining (2.41) and (2.54), (2.47) becomes \[S(Y, X) = 0, \quad \forall X \in \Gamma(D), \quad Y \in \Gamma(D^\perp). \] (2.55)

Relying on Definition 1.5, \(M \) is mixed normal. Q.E.D.

References

Kentaro Yano and Masahiro Kon, Structures on manifolds, World Scientific Publishing Company, Singapore (1984), pp. 16-17