An Integral Related to the Weibull, Inverse Weibull and Bur XII Distributions

M. Aleem

Abstract

This paper gives some integrals which are worthy for the constitution of Fisher information for Bur XII, Pareto, Weibull, Inverse Weibull and related distributions. Some work has been done by Baazauskas (2003) and Alan (2011), we have given more generalizations.

Key Words: Bur XII, Weibull, Inverse Weibull distributions, Expectation, Integration, Differentiation

1. Preliminaries

Let we consider the integral given as:

$$\int_0^\infty \frac{(\log x)^m}{b} \frac{dx}{1 + \frac{x^c}{\lambda}}$$

(1.1)

Where “b, c and \(\lambda > 0\)” and “m” is non-negative integer, for a = 1 and \(\lambda = 1\) (1.1) become same as Alan (2011). As noted by Baazauskar (2003) that such type of integrals used in Fisher Information for Beta, Pareto, Bur and related distributions.

The objective of this paper is to present the generalization of the Alan (2011) results.

a. The cumulative distribution function (cdf) of three parameter Burr XII distribution is given as:

$$F(x; b, c, \lambda) = \left(1 + \frac{x^c}{\lambda}\right)^{-b}$$

(1.2)

1 Former Professor, Department of Statistics, The Islamia University of Bahawalpur, Pakistan.
b. When \(c = 1 \) in eq. (1.2) the resultant distribution is known as Lomax, see Lomax (1954) for an application to the analysis of business failure data, the cumulative distribution function (cdf) is given as:

\[
F(x; b, \lambda) = \left(1 + \frac{x}{\lambda}
ight)^{-b}
\]

(1.3)

\[
\int_{0}^{x} \left(\log \frac{\lambda}{c} \right) \frac{1}{1 + \frac{\lambda}{c}} \frac{d\lambda}{c} = \frac{1}{b} \int_{0}^{x} \left(\log \left(\frac{\lambda}{c} \right) \right) \frac{1}{1 + \frac{\lambda}{c}} \frac{d\lambda}{c}
\]

\[
= \frac{\Gamma \left(\frac{1}{c} \right) \Gamma \left(\frac{b - \frac{1}{c}}{c} \right)}{\Gamma b} E \left(\log \left(\frac{\lambda}{c} \right) \right)^{m}
\]

(1.4)

Now by putting \(\frac{\lambda}{c} = y \) in eq. (1.1), we get

Here “E” denotes the expectation w.r.t the Bur-xii distribution given in eq. (1.2) that we can write (1.4) as:

\[
E \left(\frac{1}{y^c} \right) = \beta \left(\frac{r + \frac{1}{c}}{b - \frac{1}{c}} , \frac{r}{c} , \frac{b - \frac{1}{c}}{c} \right)
\]

(1.5)

In eq. (1.5) each of the “m” differentiations w.r.t generates a factor “log y”, and moments of Bur distribution given in (1.2) are as follows:

\[
E \left(\frac{1}{y^c} \right)^r = \frac{\Gamma \left(\frac{r + \frac{1}{c}}{b - \frac{1}{c}} \right) \Gamma \left(b - \frac{1}{c} - \frac{1}{c} \right)}{\Gamma b}
\]

(1.6)

Where “\(\beta (.) \)” and “\(\Gamma (.) \)” are beta and gamma functions respectively, see Watkins (1997).
2. Derivation of the Results

\[\int_0^{\infty} \frac{(\log x)^m}{1 + \frac{x^c}{\lambda}} \, dx = \frac{\Gamma\left(\frac{1}{c}\right) \Gamma\left(b - \frac{1}{c}\right) \lambda^{c \frac{r}{c}}}{(\Gamma b)^2} \frac{d^m}{d_r^m} \]

\[\left(\frac{x}{c} + \frac{1}{c} \right), \Gamma \left(b - \frac{r}{c} - \frac{1}{c}\right) \right)_{r=0} \]

a. By putting the result of eq. (1.6) in eq. (1.5), we get as:

Now differentiating “m” times and then putting “r = 0”; writing \(\Gamma^{(i)} \) for the i\(^{th}\) derivative of \(\Gamma \), we get as:

\[\int_0^{\infty} \frac{(\log x)^m}{1 + \frac{x^c}{\lambda}} \, dx = \frac{\Gamma\left(\frac{1}{c}\right) \Gamma\left(b - \frac{1}{c}\right) \lambda^{c \frac{r}{c}}}{(\Gamma b)^2} \frac{d^m}{d_r^m} \sum_{i_1=0}^{m} \sum_{i_2=0}^{m-i_1-i_2} \left(\begin{array}{c} m \\ i_1, i_2 \end{array} \right) (-1)^i \]

\[(\log \lambda)^i \Gamma^{(i)} \left(b - \frac{1}{c} \right) \Gamma \left(\frac{1}{c} \right) \] (2.1)

\[i_1 = 0, 1, 2, \ldots m, \quad i_2 = 0, 1, 2, \ldots (m - i_1) \]

For “c,\lambda = 1” and “b = d+1” The resultant (2.1) is same as in Brazaaskas (2003).

b. Now considering weibull distribution with cumulative distribution function (cdf), given as:

\[F(x) = 1 - \exp \left(-\frac{x^\beta}{\gamma} \right), \quad \beta, \gamma > 0, \quad x \geq 0 \]

And

From (1.5) along with (b) using eq. (2.2), we have

\[E(x)^r = \gamma^{\frac{r}{\beta}} \Gamma\left(1 + \frac{r}{\beta}\right) \] (2.2)

\[E(\log x)^m = \left[\frac{d^m}{d_r^m} E(x)^r \right]_{r=0} \] (2.3)

By applying (2.2) in (2.3) we obtain:
\[E(\log x)^m = \sum_{j=0}^{m} \binom{m}{j} \beta^{-m} (\log \gamma)^j \Gamma^{(m-j)} \quad (2.4) \]

\[j = 0, 1, 2, \ldots m \]

Now differentiating “m” times, then putting “r = 0” we obtain:

\[F(x) = \exp \left(\frac{1}{\gamma x^\beta} \right), \quad \gamma, \beta > 0, \quad x \geq 0 \quad (2.5) \]

Similarly for Inverse weibull distribution with (cdf) given as:

\[E(\log x)^m = \sum_{j=0}^{m} \binom{m}{j} \beta^{-m} (\log \gamma)^j \Gamma^{(m-j)} \quad (2.6) \]

\[j = 0, 1, 2, \ldots m \]

3. References

